
The Magazine of the A P PLE , K IM , PET

and O ther S ystem s

R o c k w e l l a S y n e r te k

EXPAND THE 6 5 0 2 WORLD

NOW AT FINE
COMPUTER STORES

S P E A K E A S Y SO F T W A R E LTD.
B O X 1220, KEM PTV ILLE , O N T A R IO

KOG 1J0
BULLS S BEARS

NOW AT MOST APPLE-II DEALERS

kidstuff

W RLQRDS

' J
V\

OCTOBER/NOVEMBER 1978

ISSUE NUMBER SEVEN

We're Still Number One! 4
by Robert M. Tripp

BREAKER: An Apple II Debugging Aid 5
by Rick Auricchio

MOS 16K RAM for the Apple II 12
by Allen Watson III

PET Update 13
by Gary Creighton

6502 Interfacing for Beginners: The Control Signals 17
by Marvin L. De Jong

650X Opcode Sequence Matcher 19
by J. S. Green

A Memory Test Program for the Commodore PET 25
by Michael McCann

MICROBES, A Suggestion, and an Apology 27

The MICRO Software Catalog IV 29
by Mike Rowe

Apple Calls and Hex-Decimal Conversion 31
by Marc Schwartz

6502 Bibliography - Part VI 33
by William R. Dial

6502 Information Resources 35
by William R. Dial

KIM-1 as a Digital Voltmeter 37
by Joseph L. Powlette and Charles T. Wright

Cassette Tape Controller 39
by Fred Miller

Apple II High Resolution Graphics Memory Organization 43
by Andrew H. Eliason

A Digital Clock Program for the AYM-1 45
by Chris Sullivan

Peeking at PET's BASIC 47
by Harvey B. Herman

KIMBASE 49
by Dr. Barry Tepperman

Advertiser's Index

Speakeasy Software IFC
Microcomputer Comp. Spec. 11
Smith Business Services 26
The Computerist, Inc. 48
Computer Components BC

Connecticut microcomputer 2
CGRS 16
Computer Shop 28
Synertek Systems IBC

MICRO is published bi-monthly by
The COMPUTERIST, Inc., P.O. Box 3, So. Chelmsford, MA 01824.
Controlled Circulation postage paid at Chelmsford, MA 01824.
Publication Number: C0TR 395770. Subscription in U.S. $6.00/6 issues.
Entire contents copyright 1978 by The COMPUTERIST, Inc.

Please address all correspondence, subscriptions, and address
changes to: MICRO, P.O. Box 3, So. Chelmsford, MA 01824.

E d i t o r / P u b l i s h e r

Robert M. Tripp

P r o d u c t i o n M a n a g e r

Peter R. Woodbury

B u s i n e s s M a n a g e r

Donna M. Tripp

A d m i n i s t r a t i v e A s s i s t a n t

Susan K. lacombc

C i r c u l a t i o n

Eileen M. Enos

M i c r o - S y s t e m s Lab

Robert 0. Goudct

M a i l room

Cheryl lyn Loyd

G o f e r

Fred Davis

CO MMO DORE P E T HA RD C O P Y O U T P U T USING P E T ADA 1200 It¥m |»EM THE FUNCTION PLOTTED I Si
IMIM Y>I*SlH<4.d*X>

ii£AOY.

rflENOACK S«iai - Carburetors - 1977

I OPEN 6 , 8 «CNO 6 'L IS T
19 HCM APCSIN AND ARCCOJ FUNCTIONS FOR THE COMMOflKlE PET

70 r£n *Lt stad on a GE T*r*lN«t J M
8* Hit* "ualnq a C * : AOA I20W.
W ftCM
I M BEK OPEN OUTPUT FILE ON OEVICfi #6 .
lit OPEN 5 .8
120 HEM
two REM GET A 5 INE VALUE
*10 JNPUT 5
) 2« C-S
iVt HEM
100* HEK TH| *]NE OF THE ANCLE IS S
101# REM IF THE SJH IS IN THE RANGE OF -I TO I . TIIFH COUPUTE.

10201 fF 5<l AMO s»-t GOTO t<rS8
INJfl A>-90»QITO20«0
I M V REN TliE AHCSINE IS AS
IH5» *S »A T M (S /M 1-S*S>“ . 5 >)
I M * MEN THE RESULT IS IN MAOtANS. CONVEMT TO DEGREE*.

1070 ASaAS*• 00 /
7m m REN THE COSINE OF THE ANGLE IS C
M I 0 REN IF THE CORINE IS IN THE MANGE OF -I TO I , X
2*1 I itEN ANO NOT - T* 0 . THEN COMPUTE
202* IF C<>0 THEN 2040 0
2030 AC-90 •GOT1) 3CO0 5«
2(M « IF C«* ANO C>-l THEN 2070
2iti* AC • 0 *G<l TO 30<M
2060 REN THE AMCCns IS AC
2W70 AC-ATNHI-C«C>*.5/C>
2N0 0 REN THE RESULT lb IN MAOIAKS. COMVEmT TO OEGMEES.
2090 AC*AC*160/
J W l PRINT*!.. ♦ SIN,COS ARCS1N ARCCOS”

3010 PR|NT*5 ,S»
JU20 FON N-l TO 1J-LEJM STMl(S>> >PPINT*5 , “ ’ MlifcxT
30J0 PRINTS .ASi
3IM4 FOR N»I IT) I 3-tEMl STRH AS>) iPRIHT*5 ,* " « 'N 6lT

3*50 PRINT*5 ,AC
3 1 Ml GOTO 500

iiEact.

i5«
200
250300
350
4HH
450
5«0
M H
600
65*700
75*

I • TYPE C

15! X TYPE A

I •••
I ttt
\ 000

10! * ** OOO
! *** nno ooo
! nno ooo non
! ft ttt non ooo xxx
lif* (100 000 IKK) XXX XXX
5fooo non nno xxx xxx xxx
MXX1 XXX XIX XXX XXX XXX
!XXX XXX XXX XXX XXX xxx
!XXX XXX XXX XXX xxx xxx
!XXX XXX XXX XXX xxx xxx

ttt
ttt ttt

ttt ttt
ttt 000
000 0(X1
ooo ono
tux) (xv)
non ooo
non xxx
XXI xxx
XXX xxx
xxx xxx
xxx xxx
XXX XXX
xxx xxx
xxx xxx
xxx xxx

ttt
ttt ttt
ttt non
(XXI 0(1)
(XV) (IK)
ooo ooo
noo noo
ooo xxx
xxx xxx
xxx xxx
XXX xxx
XXX XXX
XXX XXX
XXX xxx
XXX XXX
XXX xxx
XXX XXX

ttt

tit
ItI

ttt (KVI
ttt (Kin 000 ooo
(xv) non
noo ooo
(IH1 0011
nno xxx
non xxx
xxx xxx
XXX III
XXX XXX
XXX XXX
XXX XXX
XXX XXX
XXX XXX
XXI XXX
XXX XXX
XXX XXX
xxx xxx

!JA;j FEB MAH APR MAT JUN JUL AUG SEP OCT NOV OEC

250«
IM0M0
22500400 HM
62500
9fW00
122500
'60H00
202500
25A000
3025 00 360000
<225M49MM0
5625M0

125000
I f)ttfl0tK1
33750*0
15625000
270000 00
4̂ 875000 64000 <*00
91 I25<*00
I 25 M*HMW
I66375W0216PWH0M
274625000
34 J*n*0000
42**750*0

?I 7506.221
1919487.58
6861077.28
16939435.3
34146855.2
69546854.8
96271M?2.8
|4«49014|
216427/47
301345240
4(1*54(1 M8 5J4J42J0I
687112634
8672 19597
.0J»I.1J90E*»9

030903735
J.16 22776 7:•I 0
2.6575J572E*I I
l.20339299E*12
3.603’5767E*I2
1.01>JI532E* U
2-27t 7327JE*I 3
4.57946723E*13
8.49895829E*I3 I .4777J127£*|4
2.437̂ 72606*14
3.0485220 IE*14
5.b586i722E*14
0.6449943E*I 4
1.24 165712e*l5

7.07106781
10
I 2. 2474487
14.142 1356
15.611 3U 3
I 7.3205*61
>8. 708*169
2*
21.2132*34
22.3606798
23. 4VH708
24,494 0974
25.4950976
26.4575131
27. 3051279

i.69999999 J. 799*9999 3.89999999 J.99099999 4,*9999999 4.|9999999
4.29999999 4.39999999 4.49999999

4.79999999

HS-2J2 PRINTER ADAPTER FOR THE COMMODORE PET

The CONNECTICUT mlcroCOMPUTEk ADApter model 1200 Is the first In a line of peripheral adapters for the
COMMODORE PET. The CmC ADA 1200 drives an RS-232 printer from the PET IEEE-488 bus. The CmC ADA 1200 allows
the PET owner to ootaln hard copy program listings, and to type letters, m^iuscrlpts, mailing labels, tables
of date, pictures. Invoices, grrphs, checks, needlepoint patterns, etc., using a standard RS-232 printer.

The CmC ATA model I 2 W B comes pssembled and tested, without power supplies, case, or RS-232 connector
for 598.50. The CmC ADA 12(WC comes complete for $169.00. Specify baud rate when ordering. (300 baud Is
supplied unless otherwise requested. Instructions for changing the baud rate are Included.)

WORD PROCESSOR FOR THE COMMODORE PET

CONNECTICUT mlcroCOMPUTER now has a word processor program for the COMMODORE PET. This proaram permits
composlnq and prlntlno letters, flyers, advertisements, manuscripts, articles, etc., using the COMMODORE PET
and an RS-232 printer.

Script directives Include line length, left margin, centering, and skip. Edit commands allow the user to
Insert lines, delete lines, move lines, change strings, save onto cassette, load from cassette, move up, move
down, print and type.

The CmC Word Processor Proaram addresses an RS-232 printer through a CmC printer adapter. Z Z — ' ™
The CmC Word Processor Program Is available for S29.50. '■ ____ !_ ;„s

RS-232 TO CURRENT LOOP/TTL ADAPTER

The CmC ATApter model 4m has two circuits. The first converts an RS-232 signal to a 20 ma current loop
signal, and the second converts a 20 ma current loop signal to an RS-232 signal. With this device a
computer's teletype port can be used to drive an HS-232 terminal, or vice versa, without modification of the
port. The CmC ADA 4tw can also be parelelled to drive a teletype or RS-232 printer while still using the
computer's reoular terminal. The CmC ADA 400 can easily be modified to become an RS-232 to TTL and TTL to
RS-232 APApter. The CmC ADA 400 does not alter the baud rate and uses standard power supplies. The current
loop is isolated from the RS-232 signal by optolsolftors.

The CmC ADA 4 W is the perfect partner for KIM If vou want to use an RS-232 terminal Instead of a
current loop teletype.

The CmC ADA 4»IS comes with drilled, plated through solder pads and sells for S24.50. The CmC ADA 400B
comes with harrier strips and screw terminals and sells for S29.50.

This snnouncem'nt .ifS composed on a COMMODORE PET and printed on a GE •};! j;
TermiNet using p CmC ADA I200C printer adapter and the CmC Word Processor ;----5:- ...:::
Proaram.

OnCf I Oiicrtptlon I baud rttt f firlet I totaj J Nall ■! rtmitxmct or ĉarg* Infer**tjpn te>

---- _______________________ 1_________ -l-'rJ C O N N E C T I C U T m i c r o C O M P U T E R
____..................... _..i_________If] 150 Paconc Road, RoomS
____I C< Hord Pr.c.or Progr.. Ic.i.tl.)______________________........ d • Conn._06804________________

1 C*C ACA 4N S (solder pada) I * 3 4 .5 8 I I ham?

I CmC ACA 4M 8 IbarrI»r ttrlps) I <39 .50 I ! COMPANY

SwOtolal I I ADOBE SS

Connactlcut r»iid»ni» add 7X iat«t tax I I

Handling snd shipping - add par ordar I <3 .00 1 CITY

For*I go air ««ll - add *5 .0 0 par ordar l 1 STATE ZIP

Tot*] Included »Jth ordar I I

CHARGE TO<VISA i HASTER CHAMCE M/C INTERBANK NUMBER ^Expiration data ^ ^

Credit card niMOar

SIGNATURE ^

IN THIS ISSUE .

With this issue we introduce a new format for
MICRO. We were dissatisfied with the quality of
the last couple of issues of MICRO, particularly
the last issue, and decided to try a different
type of printing. This new format is similar
to the old, but is on lighter paper, printed on
a web press, saddle stiched instead of side
Stapled, and does not have the old MICRO border.
We have kept the features that most people said
they wanted - especially the three hole punch.
Of course, we will not know the quality of the
new printer's product until after this goes to
press. If you have any comments, let us hear
from you.

Rick Auricchio, who wrote "An Apple II Program
mer's Guide" in MICRO number 4, has provided
anqther super article in "BREAKER: An Apple II
Debugging Aid". This article/program allows the
Apple user to debug his program with real break
points which permit the user to interrupt his
program at any point, gain control, and then
continue execution. The program, written in
assembler has a lot of useful techniques and is
presented in its entirety.

Those of you planning to add more RAM to your
Apple II will find some valuable comparative
information about 16K RAMS in Allen Watson III's
article on "MOS 16K RAM for the Apple II". This
info includes a table on how to decode how the
various manufacturers encode their access times.

William M. Shryock Jr. presents an "Improved
Star Battle Sound Effects" program for the Apple
II based on the original article by Andrew H.
Eliason in issue number 6.

Gary A. Creighton has a number of items for the
PET under the title "PET Update". Included are
a discussion of the RND (Random Number) Function
use, a short program for Machine Language Stor
ing in BASIC, some rules for USR Parameter Pass
ing, and a machine language program to Save
Mancine Language and Load Directly. A most use
ful set of goodies for the PET user.

Marvin L. De Jong's series on "6502 Interfacing
for Beginners" continues with a discussion of
"The Control Signals". The article presents the
basic theoretical information, and then a pro
gram and hardware test configuration for ex
perimenting with the control signals.

Quite often you may find that you have two sets
of object code that are very similar, but not
identical. It would be useful to have some way
to let the computer compare the two sets of code
and display the differences. This may sound
simple, but since the addition of a single line
of code would make all subsequent lines "differ
ent" even though they were identical except for
the slight offset, it is not so simple. J. S.
Green presents the solution and a program in
"6502 Opcode Sequence Matcher".

Ever have doubts about your PET's memory? Then
you will want to try "A Memory Test Program for
the Commodore Pet" by Michael J. McCann. The
program requires that the lowest 4K of memory be
working and can be used to test all other memory
in the PET.

Marc Schwartz presents some rules and ideas for
"Apple Calls and Hex-Decimal Conversion", a use
ful tool when trying to generate the decimal
equivalents for hex codes.

Once upon a time there were hardly any articles
about 6502s at all. Now William R. Dial's "6502
Bibliography" is up to reference number 379, and
this includes many multiple references. Since
a reference of interest is of limited value if
you do not know where to find the original, a
list of "6502 Information Resources" has been
compiled by William R. Dial that tells where to
obtain the various magazines he has been using
in the bibliography and how much they cost.

Every once in a while someone will ask "What can
you do with a KIM-1 now that the PET is here?"
Joseph L. Powlette and Charles T. Wright show
how to use the "KIM-1 as a Digital Voltmeter".

An automated "Cassette Tape Controller" is the
subject of Fred Miller's KIM article. He pre
sents a complete hardware/software system to aid
the user who wants to control cassette tapes
from his KIM.

Andrew H. Eliason discusses the "Apple II High
Resolution Graphics Memory Organization", and
presents a few short programs that help to un
derstand and use this feature of the Apple.

Chris Sullivan presents the first program that
he wrote for the new Synertek SYM-1, "A Digital
Clock Program for the SYM-1". The program is a
24 hour clock and has a number of SYM specific
subroutine calls and special locations which
make it a good introduction for the SYM owner.

Commodore thought they were being pretty smart
making the PEEK in BASIC incapable of PEEKing at
BASIC itself. Harvey B. Herman was even smarter
and shows how he is "Peeking at PET's BASIC".
He raises some questions about Commodore's basic
strategy.

"KIMBASE" is a major program by Dr. Barry Tep-
perman. While the purpose of the program is to
convert from almost any number system to any
other, its main value to many readers may be in
the numerous subroutines which provide support
multiplying, dividing, and other functions.

Robert M. Tripp, Editor

ME "RE S T ILL NUMB E R ONE !

It's been a whole year since I sat down to write
"We're Number One!" for the first issue of
MICRO. Since then a lot has happened within the
microprocessor/microcomputer world, and if any
thing, the position of the 6502 as the leader
has been strengthened.

THE 6502 MICROPROCESSOR FAMILY

There have been a couple of major changes in the
basic 6500 family of microprocessor products.
Most significant has been the emergence of
Synertek and Rockwell International as major
producers of 6500 type products. While many
companies recognized that the 6500 series of
products being developed by M0S Technology were
in many technical aspects superior to the 8080
and 680Q product lines, they were reluctant to
commit to a sole source product manufactured by
a relatively small company. Now that Synertek
and Rockwell have made major commitments to de
velop and support the 65C0 line, its growth and
acceptance should accelerate.

Rockwell and Synertek are not simply second
sourcing existing M0S Technology products, but
are undertaking a number of significant new 6500
related product developments. Rockwell has in
troduced the R6500/1 one-chip microcomputer.
Synertek is soon to announce a 6551 ACIA. Also
in the works by Rockwell and/or Synertek are
a 6545 CRT Controller, a 6509 16 bit micro
processor, and a number of other products. It
looks as though most development work at M0S
Technology has slowed or stopped and that most
of their efforts are devoted to supporting the
PET and KIM-1 systems.

A searing blast at the 6502 microprocessor which
was written by Jack Hemenway and appeared in EDN
was very solidly "put down" by articles by
several qualified writers which appeared in a
later issue.

THE 6502 MICROCOMPUTERS

This has been a very big year for 6502 based
systems. Most of the trade talk and magazine
articles are about the PET, TRS-80, and the
Apple II, and two-out-of-three ain't bad! The
Apple II was just becoming available a year ago
when MICRO started, and in fact was featured on
the first MICRO cover. Since then the growth of
the Apple II has been one of the brightest suc
cess stories of the year. In a year when many
of the original 8080 based companies found them
selves in deep trouble, the 6502 based Apple
Computer Company flourished. A year ago it was
impossible to get a Commodore PET. They had
been demonstrated at some computer shows, but
were not yet available. Since then they have
come on strong. The "grass roots" support for
the PET seems very strong, judging from the num
ber of small magazines that have sprung up de
voted to the PET.

As our new years starts, there are two major new
6502 system developments. The Synertek SYM-1 is
a single board computer which is essentially an
upgrade of the KIM-1. It has more RAM, ROM, and
1/0 than the KIM, plus a much more powerful mon
itor program, plus a number of other features.
It is just becoming available now, and selling
for $269 with 'IK RAM, is hoped to do for Syner

tek what the KIM-1 did for M0S Technology. The
AIM 65 is Rockwell's way of announcing its
serious entry into the 6502 world. This single
board system includes a full typewriter style
keyboard, twenty character LED display and a
twenty column printer, plus room for 4K RAM, up
to 20K ROM, and an extensive 8K monitor. This
product is sure to generate a great deal of in
terest in the 6502 from a variety of users.
Both Synertek and Rockwell will be selling
an assembler in ROM and an 8K BASIC in ROM by
the end of the year.

In addition to these major 6502 microcomputer
systems, a number of other smaller manufacturers
have introduced 6502 based systems in the past
year. The only major drop-out during the year
was ECD's MICROMIND. Since this system was
never really delivered from production to any
customers, it's loss was probably of little sig
nificance, except to those loyal customers who
had their money tied up for a year or so.

6502 SOFTWARE

Whereas a year ago there were only a small hand
ful of programs available for the 6502, there
must by now be hundreds of them. Both the PET
and the Apple II have generated large markets
for 6502 based software, and many stores now
have large quantities of programs for sale.

MICRO

We have been very pleased with the growth of
MICRO in its first year. The first issue was
28 pages long and went to about 450 subscribers
and stores. This issue is twice the size and
will immediately go out to about 2000 subscrib
ers and about 1500 more copies will go to the
computer stores. A distributorship has been
established in Europe to handle the growing in
terest over there. And, due to popular demand,
"The BEST of MICRO" will soon be published so
that new subscribers can get the information
from the first year of MICRO. Over 3000 copies
of each issue have been distributed, many as
"back issues" to new subscribers. We are also
quite proud of the quality of the articles
which have been contributed over the year. We
anticipate similar growth during the coming year
as the 6502 continues in phenomenal expansion.

Our plans for the coming year include increasing
the size of MICRO as required to print all of
the worthwhile articles we receive. Our new
printing format will permit us some increase in
size without requiring an increase in price. If
we continue to receive more good stuff than we
can print, then we will consider becoming a
monthly publication. In order to serve the fast
growing European market, we have arranged to
have MICRO distributed by L P Enterprises in
Britain. This will help keep the cost to 6502
owners in Europe reasonable.

Our success in the coming year depends on your
input. We can be no better than the material
submitted to us. You have done a great job so
far, so keep up the good work.

B R E A K E R : AN A P P L E II D E B U G G I N G A I D

Rick Auricchio
59 Plymouth Ave.

Maplewood, NJ 07040

When debugging an Assembly-language program, one
of the easiest tools the programmer can use is
the Breakpoint. In its most basic form, the
Breakpoint consists of a hardware feature which
stops the CPU upon accessing a certain address;
a "deluxe" version might even use the Read/Write
and Sync (instruction fetch) lines to allow
stopping on a particular instruction, the load
ing of a byte, or the storing of a byte in mem
ory. Since software is often easier to create
than hardware (and cheaper for some of us!), a
better method might be to implement the Break
point with software, making use of the BRK op
code of the 6502 CPU.

A Breakpoint, in practice, is simply a BRK op
code inserted over an existing program instruct
ion. When the-user program's execution hits the
BRK, a trap to the Monitor (via the IRQ vector
$FFFE/FFFF) will occur. In the APPLE, the Mon
itor saves the user program's status and regis
ters, then prints the registers and returns con
trol to the keyboard. The difficult part, how
ever, comes when we wish to resume execution of
the program: the BRK must be removed and the
original instruction replaced, and the registers
must be restored prior to continuing execut
ion. If we merely replace the original opcode,
however, the BRK will not be there should the
program run through that address again.

The answer to this problem is BREAKER: a soft
ware routine to manage Breakpoints. What the
debugger does is quite simple: it manages the
insertion and removal of breakpoints, and it
correctly resumes a user program after hitting
a breakpoint. The original instruction will be
executed automatically when the program is res
umed!

Is it Magic?

No, it's not magic, but a way of having the
computer remember where the breakpoints are!
If the debugger knows where the breakpoints are,
then it should also know what the original in
struction was. Armed with that information,
managing the breakpoints is easy. Here's how
the debugger works:

During initialization, BREAKER is "hooked-in" to
the APPLE monitor via the Control-Y user com
mand exit, and via the COUT user exit. The con-
trol-Y exit is used to process debugger com
mands, and the COUT exit is used to "steal con
trol" from the Monitor when a BRK occurs.

Breakpoint information is kept in tables: the
LOCTAB is a table of 2-byte addresses— it con
tains the address at which a breakpoint has been
placed. The ADTAB is a table of 1-byte low-
prder address bytes; it is used to locate a
Break Table Entry (BTE for short). The BTE is
12 bytes long (only the first 9 are used, but 12
is a reasonably round number) and it contains
the following items:

* Original user-program instruction
* JMP back to user-program
* JMP back for relative branch targets

When adding a breakpoint, we must build the BTE
correctly, and place the user-program break add

ress into the LOCTAB. There are eight (8)
breakpoints allowed, so that we have a 16-byte
LOCTAB, 8-byte ADTAB, and 96 bytes of BTE1s.

As the breakpoint is added, the original inst
ruction is copied to the first 3 bytes of the
BTE, and it is "padded" with NOP instructions
($EA) in case it is a 1 or 2-byte instruction.
A BRK opcode ($00) is placed into the user pro
gram in place of the original instruction's op
code (other instruction bytes are not altered).
The next 3 bytes of the BTE will contain a JMP
instruction back to the next user-program inst
ruction .

If the original instruction was a Relative
Branch, one more thing must be considered: if
we remove the relative branch to the BTE, how
will it branch correctly? This problem is sol
ved by installing another JMP instruction into
the BTE for a relative branch—back to the Tar
get of the branch, which is computed by adding
the original PC of the branch, +2, +offset.
This Absolute address will be placed into the
JMP at bytes 7-9 of the BTE. The offset which
was copied from the original instruction will be
changed to $04 so that it will now branch to
that second JMP instruction within the BTE; the
JMP will get us to the intended target of the
original Relative Branch.

A call to the routine "INSDS2" in the Monitor
returns the length and type of an instruction
for the "add" function. The opcode is supplied
in the AC, and LENGTH & FORMAT are set approp
riately by the routine.

Removal of a breakpoint involves simply rest
oring the original opcode, and clearing the
LOCTAB to free this breakpoint's BTE.

Displaying of breakpoints prints the user-prog-
ram address of a breakpoint, followed by the
address of the BTE associated with the break
point (the BTE address is useful—its importance
will be described later).

When the breakpoint is executed, a BRK occurs
and the APPLE Monitor gets control. The monitor
will "beep" and print the user program's regis
ters. During printing of the registers, BREAKER
will take control via the COUT exit. (Remember,
we get control on every character printed - but
it's only important when the registers are being
printed. That's when we're at a breakpoint).
While it has control, BREAKER will grab the
user-program's PC and save it (we must subtract
2 because of the action of the BRK instruction).
If no breakpoint exists at this PC (we scan LOC
TAB) , then the Mointor is continued. If a
breakpoint does exist here, then the BTE ad
dress is set as the "continue PC". In other
words, when we continue the user program after
the break, we will go to the BTE; the original
instruction will now be executed, and we will
branch back to the rest of the user program.

Using BREAKER

The first thing to do is to load BREAKER into
high memory. It must then be initialized via
entry at the start address. This sets up the
exits from the Monitor. After a Reset, you must
re-initialize via "Ycl" to set up the COUT exit

again. Upon entry at the start address, all
breakpoints are cleared; after "YcI", they re
main in effect.

To add a breakpoint, type: aaaaYcA . (Yc is
control-Y). This will add a breakpoint at
address 'aaaa' in the user program. A 'beep1
indicates an error; you already have a break
point at that address. To remove a breakpoint,
type: aaaaYcR. This will remove the breakpoint
at address 'aaaa' and restore the original op
code. A 'beep' means that there was none there
to start with.

Run your user-program via the Monitor's "G" com
mand . Upon hitting a breakpoint, you will get
the registers printed, and control will go back
to the monitor as it does normally. At this
point, all regular Monitor commands are valid,
including "YcA", "YcR", and "YcD" for BREAKER.

To continue execution (after looking at stuff
maybe modifying some things), type: YcG . This
instructs BREAKER to resume execution at the BTE
(to execute the original instruction), then to
transfer control back to the user program. Do
not resume via Monitor "G" command— it won't
work Droperly, since the monitor knows nothing
of breakpoints. To display all breakpoints,
type: YcD. This will give a display of up to 8
breakpoints, with the address of the associated
BTE for each one.

Caveats

Some care must be taken when using BREAKER to
debug a program. First, there is the case of
BREAKER not being initialized when you run the
user program. ■ This isn't a problem when you
start, because you'll not be able to use the Yc
commands. But if you should hit Reset during
testing, you must r e - a c t i v a t e via "YcI",
otherwise BREAKER won't get control on a break
point. If you try a YcG, unpredictable things
will happen. If you know that you hit a break
point while BREAKER was not active, you can
recover. Simply do a "YcI", and then display
the breakpoints (YcD). Resume the user-pro
gram by issuing a Monitor "G" command to the BTE
for the breakpoint that was hit (since BREAKER
wasn't around when you hit the breakpoint, you
have to m a n u a l l y r e sume e x e c u t i o n at the
BTE). Now all is back to normal. You can tell
if BREAKER is active by d i s p l a y i n g l o c
ations $38 and $39* If not active, they will
contain $F0 FD.

It's also important to note that any user pro
gram which makes use of either the Control-Y or
COUT exits can't be debugged with BREAKER. Once
these exits are changed, BREAKER won't get con
trol when it's supposed to.

BREAKER DEBUGGER: Routines to Handle up to 8
Breakpoints, for use in Debugging of User Code.

**** A P P L E - 2 M O N I T O R EQUATES
*

002E F O R M A T EQU X ’1 2E ’ INS T R U C T I O N F O R M A T

002F L ENG T H EQU X ’1 2F 1 I N S T R U C T I O N LENGTH

003C AIL ECU X 11 3 C 1 WOR K A R E A
003D AlH ECU X 1’3 D ’

003E A 2L EQU X 11 3E 1
003F A2H EQU X 11 3F 1
004 0 A 3 L ECU X 1'40'

0041 A3H
it

ECU X 1'41'

0036 CSWL EQU X 1'36' CO U T SWITCH W O R D

0037 CSWH
*

EQU X ’'37'

F88E INSDS2 EQU X 11F 8 8 E ' D I S A S S E M B L E R

F940 PRNT Y X EQU X 11 F9 4 0 1 P R I N T Y / X REGS IN HEX
FDDA PRBYTE ECU X 1' F D D A ' P R I N T AC IN HEX
FDED COU T ECU X 1'FDED' CHAR O U T

FF65 RESET ECU X'1 F F 6 5 1 M O N I T O R RESET

FF69 MON EQU X'1 F F 6 9 1 M O N I T O R ENTRY

C H A N G E 1L O W P A G E ' TO LOCATE
E L S E W H E R E IN M E M O R Y . IT IS
N O W S E T FOR A 3 2K S Y S T E M .

0 0 0 0 0 0 7C
7D0 0
7D0 0

L O F P A C E

7D0 3
7D04
7D0 5
7C06

7D07
7D0 8
7D09
7D0A
7D0D

4C 36 7F

00
00
00
00

00

EA
EA
4C 00 00
4C

ECU
ORC
JMPI NI T

*

* ___
*

FWl
FW2
PCL
PCH
*

** S K E L E T O N
*

D AT A A P E A S

DC
DC
DC
DC

X 1 7D '
LOW PAG E * * ?
INITX

___ *

S KE L DC
NOP
NOP
JMP
DC

0
X' 4C'

3 PGS BEFO R E END M E M O R Y
ORG O U T TO M E M O R Y TOP
* > I N I T I A L I Z A T I O N ENTRY

'F I N E P C 1 W ORK
1F I N D P C 1 WORK
'GO' PC LO
'CO' PC HI

BYTE 1
BYTF 2

E R E A K - T A E L E ENTRY (ETE) **

S K E L E T O N BTE
NOPS FOR P A D D I N G

JUM P BACK INLINE
JUM P O P C O D E FOR BRANC H E S

liaiJ<3Q<3 7,6

u

*
* __
*

LO A D D R E S S OF B T E 1S KEPT IN A D T A B — *

7D0 E 26 A D T A B DC B T E 0 & 2 5 5 LO A D D R E S S
7D0F 32 DC B T E 1 & 2 5 5
7D10 3E DC B T E 2 & 2 5 5
7D1I 4A DC ETE3& 255
7D12 56 DC B T E 4 & 2 5 5
7D13 62 DC ETE5& 255
7D14 6E DC B T E 6 & 2 5 5
7D15 7A

*
DC ETE7& 255

* * __ L O C T A E C O N TAINS A D D R E S S OF U S E R - P R O G R A M I N S T R U C T I O N
*
*

W H E R E WE P L A C E D TH E E R E A K P O I N T IN THE F I R S T PLACE.

7D16 L O C T A B DS
*

2*8 SP ACE F OR 16 P C H / L PAIRS

* * __
*

E R E A K - T A B L E E N T R I E S { B T E 1S) --- *

7D26 BTE Id DS 12 1 2 - B Y T E S R E S E R V E D
7 D32 BTE1 DS 12
7 D3E BTE 2 DS 12
7D4A BTE3 DS 12
7D56 BTE 4 DS 12
7D62 BTE5 DS 12
7D6E BTE6 DS 12
7D7A BTE7 DS 12 ENOUGH FOR 8 B R E A K P O I N T S

7C86
7D88
7D8F
7D8E
7D90
7D93
7D96
7D98
7E99
7 D9A
7D9C
7D9D

7C9E
7D9F
7DA0
7DA1
7 DA 2
7 DA 3
7 DA 4

7DA5
7 DA 7

* END OF D A T A AREAS
* THE REST IS ROM-AELE.

* * * * * * * * * * * * * * * *

NAME:
PURPOSE:
RETURNS:

V O L A T I L E
* * * * * * * * * * * * * * * *

A2 0F
AD 04 7D
DD 16 7D
D0 08
AD 0 3 7D
DD 15 7D
F0 06
CA
CA
10 EC
18
60

48
8A
4rt
AA
68
38
60

FI NDPC
FPC00

FPC02

*

FPC04

LDXIM
LDA
CMPX
DNE
LDA
CMPX
EEC
DEX
DEX
EPL
CLC
RTS

PHA
TXA
LSRA
TAX
FLA
SEC
RTS

** * * * * * * * * * * *

FINDPC
CHECK IF PC
CARRY S E T IF
C A RRY CLR IF
:DESTROYS AC
**** * * * * * * * * *

15
FW2
LOCTAE
FPC02
FWl
LC C TAE-1
FPC04

FFC00

* *

IN F K 1 / F W 2 M A T C H E S A NY IN LOCT A B
YES; X R E G - A D T A E INDEX 0-7
NOT; X R E G * G A R B A G E

* *

E Y T E - i r D E X TO END OF TAELE
G E T FOR C O M PARE
A P CK MATCH?
=>NO. TRY NEX T 2-PYTE ENTRY
G E T PCL, NOW
A PCL HATCH?
= > Y E S ! WE HAVE A EREAKPOINT!
EACK UF ONE
A ND A N O T H E R

= > D O ENTIRE TABLE SCAN
* > D O N E ; SCAN F A ILED

HOLD AC
HALVE V A LUE IN XREG
SINCE I T ’S 2-EYTE INDEX

S E T ' S U C C E S S 1

* *

N A P E : EREAK
P U P F C S E ; HAND L E ENTFY A T BRK A N D PROCESS BR E A K P O I N T S
NOTE- THIS RCUTINF G E T S E N T E R E D ON ‘EVERY* 'COUT'

C A L L— IT K N OWS rtEOUT DRK F E C AUSE THE M O N ITOR'S
RE G I S T E R S APE S E T U P TO F P I N T USE R REG CONTENTS.
A F T E R P R O C E S S I N G IS CCNE, IT RESTORES THE M O N I T O R ' S
F.ECS A ND RETURNS.

E0 FP PREAK CPXIM X'FE'
D0 27 ENE ERKXX

IS XREG S ET FOR EXA M I N E - R E G S ?
«>K O G E T O U T NOW.

7 DA 9 C9 A0 BRK 0 2 CMPIM X 1A0 1 IS AC SETUP C O R R E C T L Y TOO?
7DAB D0 23 BNE E R KXX * > N O P E . FALSE ALARM!
7 DAD A5 3C LDAZ AIL GE T USE R PCL
7DAF 38 SEC A ND BACK IT UP
7DB0 E9 02 SECIM 2 EY 2 EYTES SINCE
7DB2 8D 03 7D STA FWl BRK B U M P E D IT!
7DB5 A5 3D LDAZ A1H G ET PCH
7DB7 E9 00 SECIM 0 DO THE CARRY
7DB9 8D 04 7D STA FW2 A ND SAVE THAT TOO
7DBC 20 86 7D JSR FIND P C A E R E A K E R OF OUR S HERE?
7 DEF 90 0E BCC BRK04 «>NOPE. WE W O N ' T H A NDLE IT!
7DC1 BD 0E 7D LDAX A D T A B YES; G E T BTE A D D R E S S T HEN
7DC4 8D 05 7D STA PCL AND SET IT AS THE 'GO'
7DC7 A9 7D LDAIM LOWPAGE PC FOR THE 'GO' COMMAND.
7DC9 8D 06 7D

*
STA PCH {OUR PAGE FOR ETE'S)

7 DCC A9 A0 BRK0 4 LDAIM X 1A0 1 S ET AC BACK FOR M O N I T O R
7DCE A2 FB LDXIM' X 1 FB 1 A N D XREG TOO
7DD0 4C F0 FD E R KXX JMP X 1F D F 0 1 * > N O . R I G H T BACK TO C O U T ROUTINE!

* * * P R O C E S S THE 'GO' C O M M A N D {RESUME USER EXECUTION) **
* C O M M A N D FORMAT: { * Yc G) .

7DD3 AD 05 7D C M DGO LDA PCL GE T R E SUME PCL
7DD6 85 3C STAZ A I L A N D S E TUP FOR M O N I T O R
7DD8 AD 06 7D LDA PCH TO S I M U L A T E AN 'XXXX G' C O M M A N D
7DDB 85 3D STAZ A1H N O R M A L L Y .
7DDD 4C B9 FE JMP X 1 F E E 9 1 * >SAIL INTO M O N I T O R ' S 'GO'

* WE G E T C O N T R O L HERE ON THE C O N T R O L - Y USE R E X I T FROM THE
M O N I T O R (ON K E Y I N S) . A L L C O M MANDS ARE S C A N N E D HERE;
C O N T R O L K I L L PASS TO THE A P P R O P R I A T E ROUTINE.

7DE0 A2 FF KEYIN LDXIM X'FF' CHAR INDEX
7DE2 E8 K E Y IN00 INX SET N E X T C H A R A C T E R

7DE3 BD 00 02 LDAX X 1 0 2 0 0 1 GE T CHAR FROM K E YIN E U FFEF
7DE6 C9 99 CM PIM X ' 99 1 C O N T R O L - Y C H A R A C T E R ?
7DE8 D0 F8 ENE KEYIN00 “>NO. KEEP S C A N N I N G
7DEA E8 INX B UMP O V E R CTL-Y
7DEB BD 00 02 LDAX X 10200 ' G R A E C O M M A N D C H A R A C T E R
7DEE C9 C7 CMPIM X ' C7 1 IS IT ’G ' {GO) ?

A E R A N C H - T A E L E W O U L D EE
NEATER, E U T IT W O U L D
T AKE UP MOR E CODE FOR
THE FEW O P T I O N S WE HAVE.

7DF0 F 0 El BEQ CMDGO O Y E S .

7DF2 C9 Cl CMPIM X'Cl' IS IT 'A' {ADD) ?

7DF4 F0 18 BEQ CMDADD * > Y E S .

7DF6 C9 C4 CMPIM X ' C4 ' IS IT 1D' {DISPLAY)

7DF8 F0 0B BEQ XXDISP = > Y E S .

7DFA C9 D2 CMPIM X ' D2 1 IS IT 'P' {REMOVE)

7DFC F0 0A EEQ X X R EMOVE * > Y E S .

7DFE C9 C9 CMPIM X ' C9 1 IS IT 1I'' {INIT) ?

7E00 F0 09 EEQ X X INIT = > Y E S .

7E02 4C 65 FF E A D C M D JMP
*

RE SET N O THING IGNOPE IT!

7E05 4C A8 7 E X X D I S P JMP C M D DISP E X T ENDED BRnNCH

7E08 4 C 08 7F X X F E M O V E JMP CMDP-EMOV E X T ENDED ERANCH
7E0B 4 C 4F 7 F X X I N I T J MP CM C I N I T E X T E N D E D ERANCH

** P R O CESS THE ' A D C C O M M A N D . . A D D A B R E A K P O I N T AT
** L O C A T I O N SP E C I F I E D IN C O M M A N D
* C O M M A N D F O R M A T : { * aaaa Yc A) .
* *

7E0E A0 00 CMDADD LDYIM 0 CHECK O P C O D E FIRST
7E10 El 3E L D AIY A2L OP AT A A A A A ERK A L R E A D Y ?
7 El 2 F 0 EE

*
EEQ EADCMD = > Y E S . ILLEGAL!

* ___ SCAN LOCTAE FOP AH A V A I L A D L E ETE TC USE --- *

7 El 4 A 2 0F LDXIM lb EYTE INDEX TO LOCTAE END
7 El 6 ED 16 7D A D D00 LDAX LOCTAF C-ET A BYTE
7 El 9 D0 0 b ENE ADD 0 2 = > IN USE
7 FIE ED 1 b 7D LDAX LOCTAE- 1 GET HI HALF
7E1E F0 06 EEQ ADE0 4 => EOTH ZERO; USE IT!
7 E 2 0 CA ADD0 2 DEX HOV E BACK TO
7E21 CA DEX NE X T LOCTAE ENTRY
7E22 10 F2 EFL ADD00 AND KEEP TRYING!

7E24 30 DC
*

EMI EADCMD = > D O N E ? A L L FULL! R E J E C T IT

7E26 . Ab 3E ADD04 LDAZ A2L G E T aaaa V ALUE
7E28 9D lb 7D STAX LOCTAE- 1 SAVE LO HALF
7E2P 8D 0E 7D STA SKEL+4 STUFF LO A D D R INTO ETE
7E2E Ab 3F LDA Z A2K G E T aaaa V A LUE
7E30 9D 16 7D STAX LOCTAE SAV E HI HALF
7E33 8D 0C 7D S T a SKEL+b STUFF HI A D D R INTO ETE

7E36 8A TXA GPAE INDEX FOR LOCTAE
7E37 4 A LSKA MAKE A D TAB INDEX
7E38 c\c\ TAX AND STUFF PACK INTO XREF

7E39 A 9 7 D LDAIM LOWPAGE ETE'S HI A D D R E S S VALUE
7E3E 85 41 STAZ A3K HOL D IN VvORK AREA
7E3D ED 0E 7D LDAX ADTAF G E T ETE LO ADD R FROM ADTAE

7E40 8 b 40 STAZ A3L SAVE IN W O R K AREA
7E4 2 A0 0 7 LDYIM 7 7- EYTE MOVE FOR SKEL ETE
7E44 E9 07 7D A D D06 LDAY SKEL GFT SKEL PYTE
7E47 91 40 S T AIY A3L MOVE TO ETE
7E49 88 DEY S ET NEX T
7E4A 10 F8 FPL ADD0 6 => MOVE ENTIRE S K E L E T O N

7E4C C8 INY
7E4D El 3E LDAIY A2L GE T O R I G I N A L OPCODE
7E4F 91 40 STAIY A3L INTO ETE

7 E 51 20 8E F8 JSR I N S D S 2 INSDS2 (TO DISASSEMBLE)

7E54 A9 0 0 LDA IK 0 SET ERK OPCO D E
7E56 91 3E S T AIY A2L O VER O R I G I N A L OPCODE

7 Eb 8 Ab 2F LDAZ LENGTH GE T INS T R U C T I O N LENGTH

7 E bA 38
*

SEC

* — —
*

SET UP JfP ro NEXT INST. IN THE E T E --- *

7E5F A0 04 LDYIK 4
7EbD 71 40 a DCIY A3L AD D TO PC FOR D E S T I N A T I O N

7EbF SI 40 STAIY A3L STUFF INTO ETE
7E61 C8 I MY
7E6 2 Ei 40 L D AIY A3L RUN UP THE CARRY
7E64 69 00 ADCIM 0 R I GHT HERE

★ DIS P L A Y ALL A C T I V E D R E A K P O I N T S
■k COMMA ND F O F M A T : (* Yc D)
* *

7 E a 8 A2 0 F CfDDISP LDXIM 1 b INDEX TO LOCTAE END
7 EAA PD 16 7D DISF00 IjCri X LOCTAE G E T A EYTE
7 FAD D0 0 E ENE DISP04 = > IN USE
7EAF ED lb 7C LDAX L O C T A E - 1 TRY POTH EYTES TO EE SURE
7EP2 D0 0 6 ENE PISP04 => D E F I N I T E L Y IN USE.
7 EE 4 CA D I S F N X T C EX SET NEXT ENTRY
VEPb CA DEX IN LOCTAE
7EE6 10 F2 PPL DISP00 => MOPE TC GO

7 EE 8 3 0 C7
■k

DP1*! e r r r e t = > D C N E : EXIT TO MONITOR

sanaaa j.?

7EEA 8A DISP 0 4 TXA G ET INDEX
7EEB 48 PHA SAVE IT
7EBC BC 16 7D LDYX LOCT A E G E T S U B J E C T - I N S T PCH
7 EBF BD 15 7D LDAX LCCTA B - 1 AN D ITS PCL
7EC2 84 3B STYZ X' 3B' SET UP P C H / P C L FOR
7EC4 85 3A STAZ X ' 3A 1 D I S A S S E M B L E R ...
7EC6 AA TAX
7EC7 20 40 F9 J SR P F NTYX PR INT Y ,X BYTES IN HEX
7ECA A9 A0 LD AIY X ' A0 1 P R I N T ONE
7 ECC 20 ED FD JSR COUT SPACE HERE
7ECF 68 PLA R E S T O R E INDEX
7ED0 48 PHA
7 EDI 4A LbRA C O N V E R T TO A D T A E INEX
7ED2 AA TAX
7ED3 A9 BC LDAIM X 1 EC 1 '<' C H A R A C T E R
7ED5 20 ED FD JS R COU T P R INT IT
7ED8 A9 7D L D AIM LO W P A G E BTE HI A D D R E S S
7 EDA 85 3F STAZ A2H SET I N D I R E C T P O I N T E R
7 EDC 20 DA FD J SR PRBY T E P R I N T HEX BYTE
7EDF BD 0E 7D LDAX A D T A E G E T BTE LO ADD R
7EE2 85 3E STAZ A2 L SE T I N D I R E C T P O I N T E R
7EE4 20 DA FD J S R PRBYTE P R I N T ETE F ULL A D D E E S S
7EE7 A9 BE L D AIM X ' EE 1 ' C H A R A C T E R
7EE9 20 ED FD J S R

*
COU T P R INT IT

* --- D I S A S S E M B L E THE O R I G I N A L INSTRUCTION. PICK UP
* O R I G I N A L O P CODE FROM ETE , O P I G I N A L A D D R E S S
* F I E L D FROM
h

USE R P R O GRAM LOCATION.

7EEC A9 A0 LDAIM X 1A0 ' P R I N T ONE
7EEE 20 ED FD J SR COU T SPACE HERE
7 EF1 A0 00 LDYIM 0 INDEX
7EF3 B1 3E L D AIY A 2L G E T O P C O D E FROM ETE
7EF5 20 DA FD J S R P R E Y T E P R I N T OPCO D E
7EF8 El 3E L D A I Y A 2 L G E T O P CODE FROM ETE
7EFA 20 8E F8 J S R INSDS2 AN D C E T F C R M a T / L ENGTH
7EFD 20 04 7 F J S R J S R K L U G E S N EAK INTO I N S D S P @ F8D9
7F00 68 PLA,
7F01 AA TAX RESTORE L O CTAE INDEX
7F02 10 E0 E PL D I S P N X T O D I S P L A Y THE REST!

K L UGE E N TRY INTO S U B R O U T I N E
W H I C H F O R C E S J S R P R IOR TO
A PHA INS T R U C T I O N . WE HAVE
TO JSF TO THIS JMP!

7F04 48

*

J S R K L U G E PHA PUSH M N E M O N I C INDEX
7F05 4C D9 F8 J M P X 1 F 8 D 9 1 C O N T I N U E WITH INSTDS

* FEMOVE « E R E A K P O I N T AT L O C A T I O N aaaa
* C O M M A N D FORMAT: (aaaa Yc R)
* *

7F08 A 5 3E C M D R E M O V LDAZ A2 L GE T A D D R E S S LC
7F0A 8D 03 7D STA FWl H O L D IT FOR FINDPC
7F0D A5 3F LDAZ A2H G E T A D D R E S S HI
7F0F 8D 04 7D STA F W 2
7F12 20 86 7D J SR FINDPC A B R E A K P O I N T HERE?
7 FI 5 B0 03 ECS REMOV0 2 = > YES
7 F 17 4C 65 FF JMP

if
RESET *>NO: B ELL FOR YOU!

7 F1A BD 0 E 7D R E M O V 0 2 LDAX ADTAE G ET THE LOCTAE ENTRY
7 FID 85 40 STAZ A3L HOLD IT
7F1F 8 A TXA NOV." CREATE LOCTAE INDEX
7F20 0 A A is LA
7 F 21 AA TAX
7 F 2 2 A9 00 LDAIM 0 CLEAR CU T THE
7F2 4 A8 TAY A F P P O P R I A T E
7F25 9D 16 7D STAX LOCTAE LOCTAB ENTRY
7 F 28 9D 17 7D STAX L OCTAE+1 FOE THIS F?K PT

G S M Q Q ® 7-'10

7F2E A9 7D LDAIM LOWPAGE HI A DDR FOR ETE
7F2D 85 41 STAZ A3K H O L D FOR A D D R E S S I N G
7F2F El 40 L D AIY A 3 L GET O P C O D E O UT OF ETE
7F31 91 3 E STAIY A 2 L AND PUT BACK INTO O R I G I N A L
7F33 4C 69 FF JMP MON = > A L L DONE.

* *

* I N I T I A L I Z A T I O N CODE. EM
* IT C L E A R S LOCTAE, SETS UP
*

* A F T E R EVERY ' R E S E T 1 , MU
* *

* *

TERED A T S T ART A D D R TO INITIALIZ
THE Yc A N D 'COUT' EXITS.

ST R E S E T U P KITH * Yc I .
* *

7F36 A9 4C INITX LDAIM X 1 4 C 1 JMP O P C O D E
7F38 8D F8 03 STA X' 3 F 8 ' S T UFF IN Yc EXI T LOC
7F3B A9 7D LDAIM KEYIN/256 KEYIN: HI A D D R E S S
7F3D 8D FA 03 STA X '3 F A 1 S T U F F INTO JMP
7F40 A9 E0 LDAIM KEYIN&X'FF' KEYIN: LO A D D R E S S
7F4 2 8D F9 03 STA X' 3 F 9’ STUFF IKTO JMP A D DRESS
7F4 5 A9 00 LDAIM 0
7F47 A2 ' 0 F LDXIM i5 INDEX TO L O CTAB END
7F49 9D 16 7D INIT0 0 STAX LOCTAB C L E A R IT OU T
7F4C CA DEX SO THERE A RE
7F4D 10 FA

*
E FL INIT00 NO B R E A K P O I N T S

* _____
*

E N T E R HERE A F T E R H I T T I N G ’RESET' KEY, PLEA S E --- *

7F4F A9 A5 CMDINI T LDAIM EREAK& 25 5 EREAK: LO A D D R E S S
7 F 51 8 5 36 STAZ CSKL STUFF INTO 'COUT' EXIT
7F53 A9 7D LDAIM E R E A K / 2 56 EREAK: HI A D D R E S S
7F55 85 37 STAZ CSWH S TUFF INTO 'COUT' EXIT
7F57 4C 69 FF JMP MON I NIT DONE: PACK TO MON

END

Table 1 - BREAKER Command Summary

Command Function

aaaa Yc A Add breakpoint at location aaaa.
Won't allow you to add one over
an already existing breakpoint.
Maximum of 8 breakpoints allowed.

Yc D Display all breakpoints.

Yc I Initialize after RESET key. Just
sets up 'COUT' exit again without
resetting any breakpoints.

aaaa Yc R Remove breakpoint from location
aaaa. Restores original opcode.

Listing 1 - BREAKER Program for Apple II

Notes on how to read the assembler listing:

A few of the syntax expressions allowed by my
time-sharing cross assembler may appear cryptic.
Here's a key to their meanings:

1. All HEX numbers appear as X' rather than $
expressions.

2. The ampersand (&) means logical "AND" thus:

KEYIN&X'FF'

resolves to the low-order 8 bits of the KEYIN
address.

GET som e CORE
FOR

YOUR APPLE

At $190 for 16K, NOBODY can beat us!

Full instructions included.

Now there's no excuse.

CONTACT

Microprocessor Component Specialist
70 West Fairview

Springfield, IL 62707

217/529-2992

7,11

M O S 16K RAN FOR THE A P P L E II

Allen Watson III
430 Lakeview Way

Redwood City, CA 94062

MOS 16K dynamic RAM is getting cheaper. At the
time of this writing, one mail-order house is
offering 16K bytes of RAM (eight devices) for
$120. Apple II owners can now enhance their
systems for less than the Apple dealers' price.
However, there is a potential drawback to the
purchase of your own 16K RAM chips: speed. You
may wonder why, since the Apple's 6502 CPU is
running at only about 1 MHz, but things aren't
quite that simple.

To begin with, the Apple II continually refresh
es its video display and dynamic RAM. It does
this by sharing every cycle between the CPU and
the refresh circuitry, a half-cycle for each.
This means that the RAM is being accessed at a
2 MHz rate.

That doesn’t sound too fast, with the slowest
16K parts rated at 300ns access time; but you
have to remember that the RAM chips are 16-pin
parts by virtue of a multiplexed address bus.
There are two address-strobe signals during each
memory access cycle, and the access-time specif
ication will be met only if the delay between
these strobe signals is within specified limits.
In the Apple II this delay is 140ns, which is
too long. Furthermore, the Apple II timing
doesn't allow long enough RAS precharge or row-
address hold time for the slow parts. Judg
ing by the spec sheets, 200ns parts are prefer
able to 250ns parts, and 300ns parts shouldn't
be used at all. In my Apple, 300ns parts caused
a zero to turn into a one once in a while.

Many mail-order houses do not mention device
speeds in their ads. The best thing to do is to
deal only with those suppliers who specify
speeds, but for those who didn't, the table
below shows the codes used by some 16K dynamic
RAM manufacturers to indicate the speeds of
their devices. Good luck, and caveat emptor!

SPEED CODES USED BY 16K DYNAMIC RAM MANUFACTURERS

Access Time (ns)
Manufacturer Part No. 150 200 250 300

A M D 9016 -F -E -D -C

Fairchild F16K -2 -3 -4 -5

Intel 2117 -2 -3 -4

M0STEK 4116 -2 -3 -4

Motorola MCM4116C -15 -20 -25 -30

National MM5290 -2 -3 -4

N E C /1D416 -3 -2 -1

T I 4116 -15 -20 -25

Zilog Z6166 -2 -3 -4

U N P R O V E D S T A R B A T T L E S O U N D E F F E C T S

William M. Shryock, Jr.
P.O. Box 126

Williston, ND 58801

10 POKE 0,160: POKE 1,1: POKE
2,162: POKE 3,0: POKE 4,138
: POKE 5,24: POKE 6,233: POKE
7,1: POKE 8,208: POKE 9,252
: POKE 10,141

20 POKE 11,48: POKE 12,192: POKE
13,232: POKE 14,224: POKE 15
,150: POKE 16,208: POKE 17,
242: POKE 18,136: POKE 19,208
: POKE 20,237: POKE 21,96

30 CALL -936: VTAB 12: TAB 9: PRINT
"STAR BATTLE SOUND EFFECTS"

40 SH0TS= RND (15)+1
50 LENGTH= RND (11)*10+120
60 POKE 1,SHOTS: POKE 15,LENGTH:

CALL 0
70 FOR DELAYrl TO RND (1000): NEXT

DELAY
80 GOTO 40

This version can be used in low res. programs
without having to reset HIMEM. Also it can all
be loaded from BASIC.

PET UPDATE

Gary A. Creighton
625 Orange Street, No. 43

New Haven, CT 06510

I am writing this article because I'm tired of
seeing the same rehash of pseudo-facts being re
peated about the PET. If I read one more time
about the small keyboard or the RND function not
working correctly...! As you will see, the 2001
has an extremely well designed Interpreter which
can be used effectively as subroutines either
from the SYS command, or the USR command. Par
ameter passing will be revealed as an easy oper
ation , and returning USR with a value is just as
simple. The RND function may be substituted
with a twelve byte USR program to make it com
pletely random and non-repeating (as it stands,
it repeats every 24084 times through) and I will
show the use of negative arguments. Unfortun
ately, RND(0) was apparently a mis-calculation
on Microsoft’s part. They figured that ROM
empty locations would turn out to be more random
than the end product shows. They load non-exis-
tent memory locations into the RND store area
(218-222) thus causing a resulting RND value
which fluctuates between a few different values.
When ROM is finally installed in that area
(36932) the RND(0) will have the dubious quality
of being some fixed number.

RND FUNCTION USE

The RND function may be set at any time to exec
ute a known series of RND #' s by using a known
negative argument just before RND with a posi
tive one. The ability to have available a known
list of random numbers is very important in a
lot of sciences.

10 R=RND(-1)
20 FOR X=1 TO 5
30 PRINT INT(1000*RND(1)+1),
40 NEXT X

Gives the sequence: 736, 355, 748, 166,629

Since RND(-low#) gives such a small value, use
a negative argument in the range (-1 E10 to -1
E30) if you need one repeatable RND number with
a useful value, e.g., RND(-1 E20)= .81 1675238.

Concerning the true random nature of RND and
it's ability to act randomly at all times; time
must be combined with RND. This is possible
with a RANDOMIZE subroutine or faster still, re
doing RND(+) with a USR routine.

10000 REM (RANDOMIZE)
10010 R 1 = PEEK(514) : R2=PEEK(517)
10020 POKE 220, R1 : POKE 221, R2
10030 RETURN

This routine may be used at program initializa
tion and as the program halts for an INPUT. It
will start a new sequence of RND numbers when
ever called.

When the computer does a sequence without inter
vention , the following USR program is suggested
which will return a truly random number quickly;
without repeating.

10 REM (TRUE RND USING USR FUNCTION)
20 POKE 134,214 : POKE 135,31 : CLR
30 FOR X=8150 TO 8165
40 READ BYTE : POKE X, BYTE

50 NEXT X
60 DATA 173,2,2,133,220,173,5,2,133,221,76
65 DATA 69,223,0,0,0
70 POKE 1 ,• 214 : POKE 2, 31

MACHINE LANGUAGE STORING IN BASIC

When using machine language, always precede
storing by setting up BASIC's upper boundary.
This is done by:

POKE 134, ITEM : POKE 135, PAGE : CLR
e.g. POKE T34, 0 : POKE 135, 25 : CLR
sets upper boundary to 6400 and BASIC use will
be confined to 1024 to 6399 unless reset or
turned off.

You can use the following program for storing
decimal. Changing INDEX to 10000 to appropriate
position and typing in DATA lines in 100 to
9997.

0 REM ("MACHINE STORE")
1 REM WRITTEN BY GARY A. CREIGHTON, JULY 78
2 REM (SET INDEX=0RIGIN IN LINE 10000)

15 REM FIX UPPER STRING BOUNDARY
20 G0SUB 10000
25 XzINDEX / 256
30 PAGE=INT(X)
35 ITEM=(X-PAGE)» 256
40 POKE 134, ITEM
45 POKE 135, PAGE
50 CLR
55 :
60 REM LOAD MACHINE LANGUAGE
65 G0SUB 10000 : L0C=INDEX
70 READ BYTE : IF BYTE<0 THEN END
75 POKE LOC, BYTE
80 L0C=L0C+1 : GOTO 70
85 :
90 REM MACHINE LANGUAGE DATA
100 DATA

9997 DATA
9998 DATA 0,0,0,-1
9999 :
10000 INDEX=(START OF MACHINE LANGUAGE)
10010 RETURN

USR PARAMETER PASSING

The following are parameter passing rules for
the USR function and should be added to the
"MACHINE STORE" program.

0 REM ("USR(0 TO 255)")
46 POKE 1, ITEM
48 POKE 2, PAGE
100 REM (USR INPUT 0-255; OUTPUT 0-255)
110 DATA 32,121,214 : REM JSR 54905
120 DATA (Your program using input value)

5000 DATA (Setup output value in Accum.)
5010 DATA 76,245,214 : REM JMP 55029
10000 INDEX 6400

OR

0 REM ("USR(0 TO 65535)")
46 POKE 1, ITEM
48 POKE 2, PAGE
100 REM (USR INPUT 0-65535;OUTPUT 0-65535)
110 DATA 32,208,214 : REM JSR 54992

(Note: Check if 0-65535- RTS with:
Y and M(8)= ITEM
A and M(9)= PAGE

120 DATA (Your program using 2 byte passed
val ue)

5000 DATA (Setup output vlaue ITEM in Y
PAGE in A)

5010 DATA 132,178 : REM STYZ 178
5020 DATA 133,177 : REM STAZ 177
5030 DATA 162,144 : REM LDXIM 144
5040 DATA 56 : REM SEC
5050 DATA 76,27,219 : REM JMP 56091

(Setup output value anc RTS)

The input parameter may be any complex express
ion and you can of course:

input 0-255 and output 0-65535, or
input 0-65535 and output 0-255.

SAVE MACHINE LANGUAGE AND LOAD DIRECTLY

The reason for the 0,0,0 at the end of the pre
ceding machine language programs is that the
saving routine described next SAVES machine
language until 0,0,0 or an ERROR is printed.
After it has been saved in this way, it may be
LOADED and VERIFIED with little effort.

Add to "MACHINE STORE" program (all assembly is
in decimal).

OVER

0VR2

0VR3

0VR4

0 REM (" SAVEM")
100 REM 3RAM=31 (or last page of ^AM on your PET)
110 DATA 32,200,0 REM JSR 200 check if : or end of line
120 DATA 208,3 REM BNE OVER
130 DATA 76,158,246 REM JMP 63134 jump 'SAVE' if SYS 8000 only
140 DATA 32,17,206 REM JSR 52753 check if ','
150 DATA 32,164,204 REM JSR 52388 analyze arithmetical argument
160 DATA 32,208,214 REM JSR 54992 check if 0-65535
170 DATA 132,247 REM SYTZ 247 'save from' item
180 DATA 133,248 REM STAZ 248 'save from' page
190 DATA 170 REM TAX
200 DATA 152 REM TYA
210 DATA 208,1 REM BNE 0VR2
220 DATA 202 REM DEX
230 DATA 136 REM DEY back up 1
240 DATA 132,80 REM STYZ 80 initialize CHK pointer item
250 DATA 134,81 REM STXZ 81 initialize CHK pointer page
260 DATA 169,173 REM LDAIM 173
270 DATA 133,79 REM STAZ 79 LDA instruction in 0079
280 DATA 169,96 REM LDAIM 96
290 DATA 133,82 REM STAZ 82 RTS instruction in 82
300 DATA 32,200,0 REM JSR 200
310 DATA 201,44 REM CMPIM 44 check if ',' before filename
320 DATA 2 0 8, 3 REM BNE 0VR3
330 DATA 32,194,0 REM JSR 194 move code pointer over ','
340 DATA 32,51,244 REM JSR 62515 get options for "SAVE1
350 DATA 230,80 REM INCZ 80
360 DATA 208,2 REM BNE 0VR4
370 DATA 230,81 REM INCZ 81 add 1 to CHK pointer
380 DATA 32,79,0 REM JSR 79 look at next CHK code
390 DATA 208,27 REM BNE CHEND
400 DATA 160, 1 REM LDYIM 1 check for 0,0,0
410 DATA 177,80 REM LDAIY 80
420 DATA 208,21 REM BNE CHEND
430 DATA 200 REM INY
440 DATA 177,80 REM LDAIY 80
450 DATA 208,16 REM BNE CHEND
460 DATA 24 : REM CLC
470 DATA 165,80 : REM LDAZ 80

OOO DATA 105,4 : REM ADCIM 4
490 DATA 13
460 DATA 24 REM CLC
470 DATA 165,80 REM LDAZ 80

-Cr CO O DATA 105,4 REM ADCIM 4
490 DATA 133,299 REM STAZ 229 'save to' item
500 DATA 165,81 REM LDAZ 81
510 DATA 105,0 REM ADCIM 0
520 DATA 133,230 REM STAZ 230 'save to' page

530 DATA 76,177,246 REM JMP 63153 complete 'SAVE'

aaaaa© 7 ,.,

CHEND 540 DATA 165,81 : REM
550 DATA 201,31 : REM
560 DATA 240,10 : REM
570 DATA 144,210 : REM
580 DATA 32,184,31 : REM
590 DATA 162,85 : REM
600 DATA 76,108,195 : REM

CHKNF 610 DATA 165,80 : REM
620 DATA 201,253 : REM

630 DATA 144,196 : REM

640 DATA 32,184,31 : REM
650 DATA 160,40 : REM
660 DATA 76,133,245 : REM

END 670 DATA 169,13 : REM
680 DATA 32,234,227 : REM
690 DATA 169,63 : REM
700 DATA 32,234,227 : REM
710 DATA 169,69 : REM
720 DATA 32,234,227 : REM
730 DATA 169,78 : REM
740 DATA 32,234,227 : REM
750 DATA 169,68 : REM
760 DATA 32,234,227 : REM
770 DATA 96 : REM
780 REM (FORMAT: SYS 8000,

LDAZ 81
CMPIM ERAM
BEQ CHKNF check: 'not found1 if last
BCC AGAIN look at next If less than
JSR END
LDXIM 85
JMP 70028 ("?END) NOT FOUND ERROR"
LDAZ 80
CMPIM 253
BCC AGAIN again if enough room

JRS END
LDYIM 40
JMP 62853 ("?END) NOT FOUND ERROR"
LDAIM 13
JSR 58346
LDAIM 63
JSR 58346
LDAIM 69
JSR 58346
LDAIM 78
JSR 58346
LDAIM 68
JSR 58346 "?END"
RTS

."FILENAME",DEVICE#,I/O OPTION)

After typing and saving normally, type RUN when
READY. Save "SAVBW" using itself to save itself
by typing:

SYS 8000,8000, "SAVE(SYS 8000)"

when READY., REWIND TAPE #1 and type:

VERIFY "SAVE(SYS 8000)"

MACHINE LANGUAGE LOAD PROCEDURE

After SAVEing machine language, you have the
capability of LOADing directly if you follow
these rules.

Loading machine language before BASIC program:

LOAD "machine language name"
NEW
A=PEEK(247) :B=PEEK(248)
POKE 134,A :POKE 135,B
POKE 1,A :POKE 2,B (only if USR, not SYS)
CLR

Then LOAD BASIC Program.

Loading machine language from BASIC program:

0 IF OK THEN RUN 6
1 0K=-1 : PRINT "PRESS REWIND ON TAPE #1"
2 WAIT 519,4,4 : REM wait til stop if play down but not motor
3 WAIT 59411,8,8 : REM wait til key on cassette pushed
4 WAIT 59411,8 : REM wait til stop on cassette pushed
5 LOAD "machine language name"
6 A=PEEK(247) : B=PEEK(248)
7 POKE 134,A : POKE 135,B
8 POKE 1,A : POKE 2,B : REM (only if USR, not SYS)
9 CLR
10 REM (BEGIN BASIC PROGRAM, MACHINE LANGUAGE LOADED)

THE ULTIMATE FOR PET —

E X S I O O - 5100 ADAPTER
FLOPPY DISK CONTROLLER

The EXSIOO is both a S100 ADAPTER and a FLOPPY DISK CONTROLLER on a single board

The EXSIOO can be used to interface the PET* to the S100 BUS, making available the seemingly

infinite amount of S100 accessoriesu:ing the PET* memory expansion connector.

The EXSIOO board has a complete FLOPPY DOSK CONTROLLER on-board all set up ready to control

up to three mini-floppy disks.

ASSEMBLED TESTED9100 ADAPTER - £ 195 ~
; EXSIOO board built as a stand alone S100 BUS Adapter. (Floppy Disk Controller parts missing)

?eady to plug into any S100 mainframe to expand the PET*.

FLOPPY DISK PACKAGE-£ 695"
The EXSIOO board-, cable to the PET, SA^OO MINI-FLOPPY DISK DRIVE, Power Supply, and Cabinet..

A Disk System all ready to go, a disk system that can be later expanded into a full S100 Mainframe-

SIOO MAINFRAME, DISK - $ 990*
The EXSIOO board installed in a CGRS S100 Mainframe. Complete with S100 Power Supply, and

a SAUQO MINI-FLOPPY D I S K DRIVE installed in the cabinet. This system is not only a Disk CGRS MICROTECH
p^Q 3 6 8

System but a complete SIOO Mainframe ready to accept more RAM,RO M , P r i n t e r ,the w o r k s—
* S o u t h a m p t o n , P a . 1 8 9 8 6

C 2 1 5] 7 5 7 - 0 5 8 4
* TRADEMARK OF COMMODORE

m m ® ®
SUBSCRIPTION! A N O R E N E W A L INFORMATION!

If you are a subscriber to MICRO, then the code
following your name on the mailing label is the
number of the last issue your current subscrip
tion covers. If your code is 07, then this is
your last issue. MICRO will NOT send out
renewal notices. So, if your number is coming
up, get your subscription renewal in soon, and,
please check your label for correct address and
notify us of any corrections or changes.

MICRO is currently published bi-monthly. The
first issue was OCT/NOV 1977- The single copy
price is $1.50. Subscriptions are $6.00 for six
issues in the USA. Six issue subscriptions to
other countries are listed below.

[Payment must be in US $.]

Surface: Canada/Mexico
All other countries

$7-00
$8.00

Air Mail: Europe See European Distributor Rates
South America $14.00

Central America $12.00
All other countries $16.00

Name: ..

A d d r : ..

City: ..

State: Zip:

Country:

Amount: $Start MICRO it: . .

Send payment to:

MICRO, P.O. Box 3, S. Chelmsford, MA 01824, USA

Your name and address will be made available to
legitimate dealers, suppliers, and other 6502
interests so that you may be kept informed of
new products, current developments, and so forth
- unless you specify that you do not wish your
name released to these outside sources.

6502 I N T E R F A C I N G F OR B E G I N N E R S ;
THE C O N T R O L S I G N A L S

Marvin L. De Jong
Dept, of Math-Physics

The School of the Ozarks
Pt. Lookout, MO 65726

By now your breadboard should look like a rat's
nest so we shall add just a few more wires . So
far you have used several decoding chips to pro
duce device select pulses (also called chip sel
ects, port selects, etc.) These pulses activate
a particular I/O port, memory chip, PIA device,
interval timer or another microcomputer compon
ent. Almost all of these components must "know"
more than that they have been addressed. They
must know if the microprocessor is going to READ
data from them or WRITE to them. The R/W con
trol line coming from the R/W pin on the 6502
provides this information. It is at logic 1 for
a READ (typically LDA XXXX) and at logic 0 for
a WRITE (typically STA XXXX).

If you have ever tried to wrap your mind around
timing diagrams for microcomputer systems you
soon realize that system timing is also import
ant. Suppose that a memory chip is selected by
a device select pulse. A 21L02 chip, after
being selected, must decode the lowest 10 add
ress lines itself to decide which of its 1024
flip-flops will become the output data. This
takes time, so the data at the output pin is not
ready instantaneously. The 6502 simply waits
for a specified amount of time, and at the end
of this period it reads the information on the
data bus. If the access time of the chip is too
long, the 6502 will read garbage; otherwise it
will get valid data.

Likewise, during a WRITE cycle, the microproces
sor brings the R/W line to logic 0, selects the
device which is to receive the data, and at the
end of a cycle it signals the divice to read the
data which the 6502 has put on the data bus.
The signal which successfully concludes both a
READ and a WRITE instruction is the so-called
phase-two clock signal symbolized by 0* . In
particular, it is the trailing edge (positive to
zero transition) of this signal which is used.

All the timing for the microcomputer is done by
the crystal oscillator on the microcomputer
board and the clock circuitry on the micropro
cessor itself. A clock frequency of 1 MHz pro
duces a machine cycle of 1 microsecond in dura
tion. Near the beginning of the cycle the ad
dress lines change to select the divice which
was addressed, and the R/W goes to logic 1 or
logic 0 depending on whether a READ or a WRITE
was requested. If a READ was requested, some
device in the system responds by putting data on
the data bus. Typically this happens during the
second half of the cycle when 0* is at logic 1 .
Finally, at the end of the cycle, but before the
address lines or the R/W line have changed, 0t
changes from logic 1 to logic 0, clocking the
data into the 6502. The same kinds of things
happen during a WRITE cycle, except that now the
external device uses the trailing edge of the 0*
signal to clock the data, while the 6502 puts
the data on the bus at a slightly earlier time
in the cycle. For details refer to the 6502
HARDWARE MANUAL.

The circuits you have built so far, together
with a few more chips, will demonstrate the eff
ect of the control signals. Refer to Figure 1
of the last installment of this column (MICRO,
Issue 6, p. 30), and to Figure 1 of this issue.
You will see the LS145 and the LS138 have not
been changed too much, in fact all of the conn
ections to the LS145 should stay the same. The
device select pulse from the LS145 goes to G2A

as before, but another signal goes to G2B in the
new Figure 1. For the moment disregard the low
er LS138 and LS367 in Figure 1 of this issue.
The new signal to G2B of the LS138 is our WRITE
signal. It is produced by NANDING the U 7 W sig
nal with 0* and it is an active-low signal. On
the KIM-1 it is called RAM-R/W and is available
on the expansion connector. Most other 6502
systems will very likely also have a RAM-R/W
signal.

Its effect in Figure 1 is to inhibit the device
select pulse from the LS138 whenever the R/W
line is high (during all READ instructions) ,
but to a!.low the device select pulse to occur
when the R/W line is low and 0t is high. Thus,
the top LS138 in Figure 1 selects output ports
only, and the device select pulse from it term
inates on the trailing ed«e of the 0*. producing
a logic 0 to logic 1 transition simultaneously
(almost) with 04 . This pulse is inverted by the
LS04. Consequently, a WRITE instruction pro
duces a positive pulse at the G inputs of the
LS75 whose duration is about 1/2 microsecond and
whose trailing edge coincides with 0a .

The 74LS75 is a 4-bit bistable latch whose Q
outputs follow the D (data) inputs only when the
G inputs are at logic 1 , in other words during
the device select pulse from the LS04 inverter.
The trailing edge of this pulse latches the Q
outputs to the value of the D inputs during the
device select pulse. If you had a great deal of
trouble following this, you may want to check
the reverse side of this page to make sure there
is nothing valuable on it and then destroy this
by burning or shredding! Otherwise proceed to
to the experiment below.

Connect the circuit shown in Figure 1, omitting
for the time being the lower LS138 and the
LS367. You can also omit the connection of add
ress line A3 to G1 on the top LS138 if G1 is
connected to +5V as was indicated in the last
issue. In other words, simply add the LS04 and
the LS75 to your circuit of the last issue. The
RAM-R/W signal must also be generated if your
6502 board does not have one. Simply use one
inverter on the LS04 to invert the R/W signal to
R/W, then NAND it with the 0 , and run the out
put of the NAND gate to the G2B pin on the LS138.

The address of the device is 800F if the connec
tions are made as shown in the figure. If other
pins on either the LS145 and/or the LS138 are
changed the address will be different. The
switches shown connected to the D inputs may be
implemented with a DIP switch or jumper wires.
An open switch corresponds to a logic 1 while a
closed switch is logic 0. Set the 4 switches to
any combination then load and run the following
program:

0200 8D OF 80 STA DSF.

The LEDs should indicate the state of the
switches. If you add the statements

0203 4C 00 02 JMP START

then you should be able to change the switches
and the LEDs will follow the switches. Try sub
stituting an AD OF 80 (LDA DSF) for the 8D OF 80
instruction. Nothing should happen, even though
the same address is being selected, because on
LDA instruction the R/W line is high, inhibiting
the LS138 from producing a device select. Fin

£31(3(3® T - n

ally, connect the data lines DO-3 from the 6502
to the D-inputs of the LS75, making very sure
that the LS145 is de-selecting other locat
ions. On the KIM-1 this means that pin 1 of the
LS145 is connected to pin K on the application
connector and pin 9 of the LS 145 is connected
to pin J. The appropriate pull-up resistors
must also be added. With the data lines conne
cted run the following program:

0200 A9 04 LDAIM $04
0202 8D OF 80 STA DSF.

Play around with different numbers in LDAIM ins
truction and explain your results. If nothing
seems to make sense, it may be that your data
lines need to be buffered, a topic we will take
up next issue. If your results make sense you
will have discovered that we have configured a
4-bit output port whose address is 800F. Adding
another LS75 to connect to data lines D4-D7 and
whose G connections also go to the output of the
LS04 will give an 8-bit output port. Seven
other output ports, addresses 8008 through 800E,
could be added using the other device select
signals from the LS138, LS04 inverters, and LS75
latches.

If you want to make an input port wire the cir
cuit for the lower LSI38 in Figure 1. If you

don't have much more room on your circuit board
you might want to simply reconnect the upper LS-
138 to become the lower LS138. A couple of con
nections do the trick. Set the switches to any
thing you like and run the program below.

KIM-1 users should see the hex equivalent of the
switch settings appear in the right-most digit
on the display. Owners of other systems can
omit the last two lines of the program, stop it,
and examine the location 00F9 to see that the
lowest four bits agree with the switch settings.
Experiment with other switch settings to make
sure that everything is operating correctly.

The completed circuit of Figure 1 gives one 4-
bit output port (provided the data lines are
connected to the D inputs of the LS 75) and one
4-bit input port, addresses 800F and 8007 resp
ectively. These two ports are easily expanded
(two more chips) to become 8-bit ports. Like
wise the circuit of Figure 1 could be expanded
to give a total of eight 8-bit input ports and
eight 8-bit output ports.

Next issue we will look at a slightly different
input port, and we will look in more detail into
three-state devices and the data bus. You may
want to keep your circuit together until then.

0200 AD 07 80 START LDA DS7 Read input port data
0203 85 F9 STA DISP and store it in location 00F9.
0205 20 1F 1F JSR SCANDS Jump to KIM display subroutine
0208 4C 00 02 JMP START Repeat program.

SSUQQ® 7 ,18

650X O P CODE S E Q U E N C E M A T C H E R

J. S. Green
807 Bridge Street

Bethlehem, PA 18018

The motivation for writing this program stemmed
from the fact that I have two machine code ver
sions of the same 650X assembler (ASM65 by Wayne
Wall, dated 1 May 77 and 13 Jun 77 respectively)
but I only have a listing of the older version.
Both are just short of 4 K bytes long. I wished
to make some local changes to the newer version
and therefore needed to establish a means of
correspondence between it and the listing. A
disassembler is helpful here but not adequate
because of discontinuities in the two codes
which make forward references very difficult to
correlate manually.

I felt that when a program has been heavily mod
ified , many opcode sequence segments whould rem
ain constant even while their respective oper
ands differ. Therefore, what was needed was a
program that would correlate and point to par
allel sequences of opcodes.

Several assumptions were made in order to sim
plify the programming task. It was presumed
that the basic order of appearance of major por
tions of the code would be the same since there
seemed to be little advantage in shuffling the
deck, as it were. Also, in order to minimize
the effect of spurious matches, it was decided
that only significant sequences need be reported
and that no portion of the code would be report
ed as a match more than once. This position
saves the program, for example, from reporting
every possible LDA,STA opcode sequence pairing
(or even all of those of the same address mode).

Process Description

As written, the scanning process of the matching
program starts at the beginning of the two code
strings, A and B, to be examined. Both initial
positions are assumed to contian opcodes. An in
dex or pointer to the B string is, in effect,
moved along B, from opcode to opcode, until a
match with the current A string opcode is found.
If no match is found before the B list is ex
hausted , the A pointer is moved to the next A
opcode position while the B pointer is reset to
its previous starting point. This general proce
dure is repeated until the A list is exhausted,
at which time the program terminates.

When a match is found, both pointers are moved
together along their respective lists, from
opcode to opcode, until the opcodes fail to
match each other. If the matching sequence
is significantly long the size and the start
and end of both segments is displayed. The
search for additional matching segments is res
umed from the end of the just-reported segments
so that their opcode elements cannot be matched
more than once.

If the completed sequence is not significant, it
is not displayed and the search is resumed from
where the short sequence began, as if there
had been no match at all.

The definition of significance refers to the
minimum acceptable number of matching codes in a
continuous sequence. The particular values used
are left to the user. While our experience has
shown a minimum value of eight to be useful, the
actual values should reflect the length of the
code being examined and the degree to which it
has been hacked up.

The effect of a too-low significance value often
results in a fewer number of matches being rep

orted, rather than more as one might expect.
This is because a spurious match of short segm
ents can have the effect of masking out longer
possible matches which would use the same code
items were they still available.

Operation

To operate the opcode matching program both
lists of code must be in memory. They may be in
ROM. They need not be at their operating addr
ess. (Indeed, if they have the same address at
least one must be somewhere else anyway). Since
the matching program reports storage, rather
than operating addresses it is useful to choose
storage addresses that have some degree of corr
espondence to the operating addresses, e.g.,
code operating at $2 1 E3 might be stored at
$41 E3 .

Enter initial values (all in hex L0,HI) as fol
lows :

$0000,01 Significance value
$0002,03 Start of list A
$0004,05 Start of list B
$0006,07 End of list A
$0008,09 End of list B

Only the starting address will be modified dur
ing program execution. The program will init
ially assume that the value at the start locat
ion is an opcode .

To run the program enter at OPMACH. As written,
it will terminate by jumping to the monitor from
END01 . The routine may be made into a subrout
ine by placing an RTS here.

Since the program cranks the data a lot, there
will be what seem to be long pauses between out
puts. The program requires about 2 minutes to
compare the aforementioned assemblers.

Results

Several sets of results, using significance val
ues of $06, $08 and $0A are shown below. In ord
er to have both versions of code resident at the
same time, it was necessary to store one ver
sion, at address $4000.

About 64 percent of the code of the two versions
of the assembler correlate when a significance
value of 8 is used. This is a reasonable per
centage when one considers the fact that the
non-significant, non-reported, sequences are
easily identified since they lie in the same
relative position between reported sequences.

An extensive manual comparison of the two code
sets was made. (So much for the work-saving as
pects of the program!) No false matches were
identified when a significance value of 8 was
used .

Variations for Text Processing

Interesting variants of the program are pos
sible. By altering or replacing the list point
er increment routines, AINC and BINC, the nature
of the list pointer incrementation may be chang
ed from the current conditional increment based
on opcode to some other condition or to a con
stant such as plus one.

With a constant increment of one , the matching
program may be used to compare sequences of any

7:: 19

textural material in a somewhat crude, one for
one fashion.

By having separate increment subroutines when
seeking to locate the start of a matching seg
ment in contrast to the incremental routines
used when "running-out" a sequence, some fairly
powerful text processing capabilities may be ob
tained at little additional cost. For example,
when seeking to locate matching segments in nat
ural language text, we might wish to start with
the initial character of alphabetic strings,
i.e., words. Therefore, by incrementing past
all non-alphabetic characters to the next alpha
betic character we can both speed up the process
and insure that our sequences start with (what
we have operationally defined as) words.

Similar techniques may be employed in the (now

separate) within sequence increment routines to
ingore , (i .e., increment p a s t a n y non-alphabet
ic characters such as control characters, num
bers, punctuation or whatever we like. Thus we
are able to obtain a far more flexible and hope
fully more useful definition of a matching seq
uence .

Conclusions

The general techniques illustrated here are both
effective and useful. The conditional matching
approach has not been fully explored, but it is
clear that it has interesting possibilities in
the area of text processing. In the present
application, correlating two lenghty strings of
machine code, the approach made practical what
otherwise would have been a difficult and dull
task.

**** O P C O D E S E Q U E N C E M A T C H E R ****
V E R S I O N 1.04. 18 A U G 78

C O P Y R I G H T ,1978

C O M M E R C I A L R I G H T S R E S E R V E D
E X C E P T AS N O T E D BY

J. S. G R E E N . C O M P U T E R S Y S T E M S
807 B R I D G E S T R E E T
B E T H L E H E M . PA 18018
(215) 8 6 7 - 0 9 2 4

NOTE: T H E B Y T C N T S U B R O U T I N E IS FROM
H. T. G O R D O N IN D D J . #22 P . 5.
(C O P Y R I G H T BY P E O P L E ' S C O M P U T E R COMPANY)

.LOC $0000

U S E R D E F I N E D V A R I A B L E S (LO,HI)
0 000 00 00 SIGN I F : .WORD S I G N I F I C A N C E
0002 00 00 A B A S E : .WORD S T A R T OF L IST A
0004 00 00 B B A S E : .WORD S T A R T OF LIST B
0006 00 00 AMAX: .WORD END OF LIST A
0008 00 00 B M A X : .WORD END OF L IST B

r O T H E R P R O G R A M V A R I A B L E S
000 A 00 00 A P O I N T : .WORD L I S T A P O I N T E R
000C 00 00 B P O I N T : .WORD LIS T B P O I N T E R
000E 00 00 A S A V E : .WORD L I S T A S E Q U E N C E S T ART
0010 00 00 B S A V E : . W O R D L I S T B S E Q U E N C E S T ART
001 2 00 00 C O U N T : .WORD S E Q U E N C E C O U N T E R

E X T E R N A L S U B R O U T I N E S (IN
.DEF S T A R T = $ 1 C 4 F
.DEF C R L F = 5 1 E 2 F
.DEF O U T C H = $ l E A 0
.DEF P R T B Y T = $ 1 E 3 B
.DEF O U T S P = $ l E 9 E

KIM)
;M O N I T O R R E T U R N POINT
;C A R R I A G E R E TURN
;D I S ? L A A C H A R
; D I S P L A HEX BYTE
;D I S P L A A SPACE

.LOC $0200

0200 20 2F IE O P M A C H : J S R CRL F
0203 A2 29 LDXf $29 ; SIG N + H E A D E R C O U N T
0205 BD 4 F 03 O P M C H l : LDAX SIGN ;D I S P L A Y H E A D E R
0 208 20 A0 IE J S R O U T C H
020B CA DEX
020C 10 F7 BPL O P M C H l
020E A5 01 LDA S I G N I F + 1
0210 20 3B IE J S R P R T B Y T ; D I S P L A Y S I G N I F HI
0 213 A5 00 LDA SIGN IF
0215 20 3B IE J S R P R T B Y T ;D I S P L A Y S I G N I F LO
0218 20 2F IE J S R C RLF
0213 20 3 B 03 J S R B A S P N T ; P O I N T E R S = 3 A5ES

7:20

n

021E A5 03 DOl : LDA A B A S E + 1
0220 C5 07 CMP A M AX+1
0222 30 09 BMI I F 1
0 2 2 4 A 5 02 LDA ABASE
0226 C5 06 CMP A MAX
0228 30 03 BMI I Fl
0 22A 4 C B7 02 JMP ENDOl
022D A2 00 I F 1 : LDX# 0
0 22F Al 0A LDAXi§ APO I N T
0 231 Cl 0C CMPX(§ BPOINT
0233 D0 64 BNE ELS 1
0 235 86 12 TH E N 1: STX COUNT
0237 86 13 STX C O U N T + 1
0 239 A2 03 LDX# 3
0236 B5 0A T H N1A: LDAX A P O I N T
0 2 3 D 95 0 E STAX A S AVE
023F CA DEX
0240 10 F9 BPL T H N 1 A
0242 A2 00 DO 2 : LDX# 0
0244 Al 0 A LDA X @ A P O I N T
0246 Cl 0C C M P X e B P O I N T
0248 D0 26 BNE END02
02 4 A A5 0B LDA A P O I N T + 1
024C C5 07 CMP A M A X + 1
0 24E 30 06 BMI EXP21
0250 A5 0A L DA A P O I N T
0252 C 5 06 CMP AMA X
0254 10 1A B PL END02
0 25 6 A5 0D E X P 21: LDA B P O I N T + 1
0258 C5 09 CMP BMAX + 1
025 A 30 06 BMI EXP22
025C A5 0C L DA BPOINT
025E C 5 08 CMP BMAX
0260 10 0 E BPL END02
0262 20 BA 02 E X P 2 2 : J S R A INC
0265 20 CE 02 J S R BINC
0268 E 6 12 INC C O UNT
026A D 0 D6 BNE DO 2
0 26C E6 13 INC C O U N T + 1
0 26E D 0 D2 BNE DO 2
0270 EA E N D O 2: NOP
0271 A5 13 IF2 : LDA C O U N T + 1
0 273 C5 01 CMP S I G N I F + 1
0 275 30 0 F BMI ELS2
0 277 A5 12 LDA C OUNT
0279 C5 00 CMP S I GNIF
0 27B 30 09 BMI ELS2
027 D 20 FE 02 T H E N 2: J S R REPO R T
0 280 2 0 45 03 J S R PNTB A S
0 283 4C 96 02 JMP E N D I F 2
0286 A2 01 ELS 2 : LDX# 1
0 288 20 3D 03 J S R BASPTl
0 28B A5 10 LDA B SAVE
0 28D 85 0C STA B P OINT
0 2 8 F A5 11 LDA B S A V E + 1
02S1 85 0 D STA B P O I N T + 1
0 2S3 20 CE 02 JS R BINC
0296 4C 9C 22 E N D I F 2: JMP ENDIFl
0299 2 0 CE 02 ELS 1 : J S R BINC
0 29C EA EN D I F 1 : NOP
0 29D A5 0D IF3 : LDA B P O I N T + 1
0 29 F C5 O 9 CMP BMAX+1
0 2A1 30 11 BMI E N D I F 3
0 2 A3 A5 0C LDA B P O I N T
02A5 C5 08 CMP BMAX
02A7 30 0 B BMI ENDIF3
0 2 A9 20 3 B 03 T H E N 3: J S R BASPNT
02AC 20 BA 02 J S R AINC
0 2AF A 2 01 LDX# 1
02B1 20 47 03 J S R PNTB S l
0 2 B 4 4C IE 02 E N D I F 3: JMP DOl
02B7 4C 4 F 1C E N D O l : JMP START

;BR IF W H O L E JOB NOT DONE

BR IF W H O L E J OB NOT DONE
H E R E IF W H O L E J O B DONE
DOES C U R R E N T P A I R MATCH*

;BR IF N O T T H E SAME
;H E R E ON SAKE
;C L E A R T H E C O U N T E R

;S A V E S = P O I N T E R S

;DO T I L L N OT TH E SAME

;BR IF NO T T H E SAME

;B R IF LESS THA N

;BR T O END O

;BR IF LESS THAN

BR TO END O IF LIMIT R E A C H E D
M O V E A P O I N T E R TO N E X T A O P C O D E
M O V E B P O I N T E R T O NEX T B O P C O D E

;BR A L W A Y S TO TO P OF DO
;A W A S T E D BYTE F OR "STRUCTURE'

;BR IF NO T S I G N I F

;H ERE ON S I GNIF. O U T P U T R E S U L T
;P O I N T E R S = B A S E S '

;A P O I N T = A B A S E

;A N O T H E R SOP TO "STRUCTURE'

;BR IF NOT DGNE

;BR IF NOT DONE

S U B R O U T I N E S F O L L O W

/ MOV E TO N E X T A O P C O D E
0 2BA A2 00 AIN C : LDX# 0
02BC Al 0 A LD A X (i? A P O I N T ;GET O P C O D E
02BE 20 E 2 02 J S R B Y T C N T ;C A L C U L A T E SIZE
02C1 8A T X A ;R E S U L T R E T U R N E D IN X
0 2C2 18 CLC
02C3 65 0A ADC A P O I N T ;ADD R E S U L T TO P O I N T E R
02C5 85 0 A S TA A P O I N T
0 2C 7 A5 0B L DA A P O I N T + 1
02C9 69 00 A DC# 0
02CB 85 0 B STA A P O I N T + 1
02CD 60 RTS

/
r MOVE TO NEX T B O P C O D E

0 2CE A2 00 BINC : LDX# 0
0 2D0 Al 0C L D AX@ B P O I N T ;GET O P C O D E
02D2 20 E 2 02 J S R B Y TCNT ;C A L C U L A T E SIZE
02D5 8A T X A ;R E S U L T R E T U R N E D IN X
02D6 18 CLC
02D7 65 0C ADC B P O I N T ;A DD R E S U L T TO P O I N T E R
0 2D 9 85 0C S TA B P O I N T
02DB A5 0 D LDA B P O I N T + 1
0 2D D 69 00 A DC # 0
02DF 85 0D S TA B P O I N T + 1
02E1 6 0 RTS

/

/ C A L C U L A T E SIZE OF O P E R A N D (+1)
/ BY H. T. G O R D O N (SEE DDJ #22. P . 5)

02E2 A2 01 B Y T C N T : L DX# 1
0 2E4 2C E 8 02 BIT B Y T C N T + 6 ;TEST BIT 3
0 2E7 D0 08 BNE HAFOP ;AL L X (8 - F)
02E9 C9 20 CMP# $20
02E B F 0 0E BEQ T H R E E ;ONLY $20
0 2ED 29 9F AND# $ 9F ; BIT S 5.6 OUT
0 2EF D 0 0 B BNE TWO ; ALL E X C E P T (0 , 4 . 6)0
02F1 29 15 H A F O P : AND# $15 ;R E T A I N S O NLY BITS 0.2
0 2F3 C9 01 CMP# 1
0 2F5 F0 05 BEQ TWO ; X (5,8)
02F7 29 05 AND# 5 ;BIT 4 OUT
02F9 F0 02 BEQ ONE ; X (8 . A) AN D (0 . A , 6) 0
0 2 FB E 8 T H R E E : INX ;RES I D . X (9 - F)
0 2 FC E 8 T W O : INX
0 2FD 60 O NE : RTS

; D I S P L A Y S I G N I F I C A N T S E Q U E N C E L I MITS
02FE A2 01 R E P O R T : LDX# 1
0 3 0 0 B5 12 R E P T l : LDA X C O UNT ; O U T P U T E X T E N T OF MATCF-
0 302 20 3B IE J SR P R T B Y T
0 305 CA DEX
0 30 6 10 F8 BPL REPTl

; O U T P U T M U L T I P L E S P A C E S
0 308 20 31 03 J S R O U T S P 4 ;FOU R S P A C E S
0 30B A2 00 LDX# 0
0 3 0 D B5 0 F R E P T 2 : L DAX A S A V E + l ;O U T P U T S T A R T AND
0 30F 20 3 B IE J S R P R T B Y T ; END A D D R OF
0312 B5 0 E LDAX A S AVE ; BOTH S E G M E N T S
0314 20 3B IE J S R P R T B Y T
0317 20 34 0 3 JSP. O U T S P 2

031 A B5 0B L D A X A P O I N T + 1
031C 20 3 B IE J S R P R T B Y T
0 31F B5 0A L DAX A P O I N T
0321 20 3B IE J S R P R T B Y T
0 324 20 31 03 J S R O U T S P 4
0327 E8 1 INX
0 328 E 8 INX
0 329 E 0 03 CPX# 3
032 B 30 E 0 BMI REPT2
0 3 2D 20 2F IE J S R CRLF

0330 60 RTS

7:22

0331 20 34 03 O U T S P 4 : J S R O U T S P 2
0334 20 9E IE O U T S P 2 J S R O U T S P
0337 20 9 E IE J S R O U T S P
0 33A 60 RTS

/
/ M OVE A B A S E &

033B A2 03 B A S P N T : LDX# 3
033 D B5 02 B A S P T l LDAX A B A S E
033F 55 0A STAX A P O I N T
0341 C A DEX
0342 10 F9 BPL B A S P T l
0344 60 RTS

7 M OVE A P O I N T
0345 A2 03 P N T B A S : LDX# 3
0347 B5 0A P N T B S 1 : L DAX A P O I N T
0349 95 02 S TAX A B A S E
0 34B CA DEX
0 34C 10 F9 BPL P N T B S 1
034 E 60 RTS

SIGN: .ASCII
034F •20
0350 3D
0351 20
0352 46
0353 49
0354 4E
0355 47
0356 49
0357 53
0358 20
3359 20

H E ADER: .ASCII
03 5 A 4F
035B 54
035C 20
035D 20
035E 20

035F 4D
0360 4 F
0361 52
0362 46
0363 20
0364 2kJ
0365 20
0366 20
0367 20
0368 4 F
0369 54
036A 20
036B 20
036C 20
036 D 4D
036E 4F
036F 52
0370 46
0371 20
0372 20
0373 20
0374 20
0375 45
0376 5A
0377 49
0378 53

.END

;4 S P A C E S
;2 S P A C E S

B B ASE T O A P O I N T & B P O I N T

B P O I N T T O A B A S E & B B ASE

1 = F I N G I S

'OT M O R F OT MOR F EZIS

0379
0000 S I G N I F 02 BA AINC

0002 A B A S E 02CE BINC

0004 B B ASE 0271 IF2

0006 A M A X 0 2 8 6 2LS2

0008 BMA X 02 BA AI N C
000 A A P O I N T 02CE B INC
000C B P O I N T 0271 IF2
000E A S A V E 0286 ELS2
0010 B S AVE 027D T H E N 2
0012 C O U N T 02FE R E P O R T
1C4F ST ART 0345 P N T B A S
1E2F CRL F 0296 E N D I F 2
1EA0 O U T C H 033D B A S P T l
1E3B P R T B Y T 029C E N D I F 1
1E9E O U T S P 029D IF3
0200 O P M A C H 02B4 E N DIF3
0205 O P M C H l 0 2A9 T H E N 3
034F SIGN 0347 P N TBS1
033B B A S P N T 02E2 B Y T C N T
U21E DOl 02F1 H A F O P
0 2 2D I Fl 02FB T H R E E
02B7 ENDOl 0 2FC T W O
0299 ELS1 02FD O N E
0235 T H E N 1 0300 R E P T l
M23B T H N 1 A 0331 O U T S P 4
0242 D02 030D REPT2
0270 E N D O 2 0334 O U T S P 2
0256 E X P21 035 A H E A D E R
0262 E X P22

7,23

SIZ E
0026
0007
0006
0006
000A
000B
0008
0 0 7A
0008
0019
004D
002E
0035
000C
0106

SIZ E
0026
003D
0020
0 0 1 F
000E
0046
0087
0009
0126
004C
0087
0 0 0 E
000C
007A
0008
0019
004D
002E
0035
000C
0087

S IZ E
0026
003D
0020

0 0 IF
0 00E
0 0 4 6
0089
0126
0 04C
0089
000E
000C
0 0 7A
0 0 ID
0 0 40
002E
0035
000C
0089

FRO M T O F R O M T O
2000 2052 4000 4052
2069 207B 4093 40A5
2099 20A5 42C2 42CE
2224 2234 437C 438C
2237 224D 4784 479 A
274E 2761 479D 47B0
279D 2 7AC 47BB 4 7CA
2 8D1 29BE 47CF 48BC
29BF 29D1 4 8BC 48CE
29DB 2A0D 48CE 4900
2A17 2AC6 . 492D 49DC
2ACB 2B33 4 9E1 4A49
2B6E 2BE5 4A4 9 4AC0
2BF2 2C04 4ACD 4ADF
2CE2 2F01 4B27 4D46

F R O M TO F R O M TO
2000 2052 4000 4052
206C 20F0 4052 40D6
20F3 213C 40D6 411F
213C 2180 4122 4166
2187 21A7 416D 418D
2 1AA 2 24D 4198 423B
2275 2394 4258 4377
23A8 23BB 4 38F 43A2
23C0 25E6 43A2 45C8
25F1 269F 4 5C8 4676
26C1 27C1 4692 4792
27C8 27E2 4 79D 47B7
27E5 27F9 47BB 47CF
28D1 29BE 4 7CF 48BC
29BF 29D1 483C 48CE
2SDB 2A0D 48CE 4900
2A17 2AC6 492D 49DC
2ACB 2B33 49E1 4A49
2B6E 2BE5 4A49 4AC0
2BF2 2C0 4 4ACD 4ADF
2DE5 2F01 4C2A 4D46

FROM TO FRO M TO
2000 2052 4000 4052
206C 20F0 4052 40D6
20F3 213C 40D6 411F
213C 2180 4122 4166
2187 21A7 416 D 418D
21AA 2 2 4D 4198 423B
2271 2394 4254 4377
23C0 25E6 43A2 45C8
25F1 2 69F 4 5C8 4 6 76

26 BC 27C1 468D 4792
27C8 27E2 479D 4 7B7
27E5 27F9 4 7B3 4 7CF
28D1 29BE 4 7CF 4 BBC
29 Dl 2A0D 48C4 4900
2A17 2AC6 492D 4 9DC
2ACB 2B33 4 9 El 4A49
2B6 E 2BE5 4A49 4AC0
2BF2 2C04 4 ACD 4ADF
2 D E 1 2F01 4C26 4D46

S I G N I F = 0006

N o t e :

items
an 1 x
false

S I G N I F = 0008

S I G N I F = 000 A

t agg e d with
r e p r e s e n t

m a t c h e s .

1:2k

A M E M O R Y TEST P R O G R A M FOR

THE C O M M O D O R E PET

Michael 3. McCann
28 Ravenswood Terrace
Cheektowaga, NY 14225

It would be useful and convenient to be able to
test PET'S memory with a testing program rather
than sending the machine back to Commodore for
service. Towards this end I have written a
memory test program in Commodore BASIC for the
PET. The program is well commented, and should
be self documenting, (see listing)

Since the program occupies the lowest 4K of
PET'S memory, use of the program will require
that the lowest 4K of memory be operating norm
ally. The amount of time required to run this
program rapidly increases as the number of bytes
under test is increased (see Figure 1.)

Testing large blocks of memory results in more
rigorous testing at the expense of time. There
fore, when using this program the user will
have to make a decision regarding rigor vs.
time. As a bare minimum, I would suggest test
ing 100 bytes at a time.

In closing I would suggest that you get this
program up and running before you have a prob
lem. It may prove difficult to get a new pro
gram working when you have a major system prob
lem .

10 REM MEMORY TEST PROGRAM FOR THE COMMODORE PET
20 REM PROGRAM WILL RUN ON 8K PET
30 REM BY MICHAEL J MCCANN
40 PRINT CHR$(147):EE=0:I=0
50 INPUT "START ADDRESS”; SA
60 IF SA<4097 OR SA>65535 GOTO 50
70 INPUT "STOP ADDRESS"; SP
80 IF ST>65535 OR SP<SA GOTO 70
90 PRINT CHR$(147):PRINT:PRINT
100 PRINT TAB(5)"WORKING"
105 PRINT:PRINT"FAULT IN ADDRESS:";
110 REM MEMORY ACCESS AND LOGIC CIRCUITRY TEST
120 REM WRITE ALL 0
130 FOR A=SA TO SP
140 POKE A,0
150 NEXT
160 REM CHECK FOR CORRECTNESS (=0)
170 FOR A=SA TO SP
180 IF PEEK(A)<>0 THEN EE=1:G0SUB 800
190 NEXT
200 REM WRITE ALL 255
210 FOR A=SA TO SP
220 POKE A,255
230 NEXT
240 REM CHECK FOR CORRECTNESS!=255)
250 FOR A=SA TO SP
260 IF PEEK(A) 0 255 THEN EE=1:GClSUB 800
270 NEXT
280 REM BEAT TESTS
290 REM WRITE ALL 0
300 FOR A=SA TO SP
310 POKE A ,0
320 NEXT
330 REM BEAT ONE ADDRESS WITH 255
335 AD=SA+I
340 POKE AD,255
350 POKE AD,255
360 POKE AD,255
370 POKE AD,255
380 POKE AD,255

390 REM CHECK ALL FOR 0 EXCEPT THE ADDRESS
BEAT WITH 255

400 FOR A=SA TO SP
410 IF A=AD GOTO 430
420 IF PEEK(A)<>0 THEN EE=1:G0SUB 800
430 NEXT
440 IF AD=SP+1 THEN POKE AD,0: 1=1+1: GOTO 335
450 1=0
460 REM WRITE ALL 255
470 FOR A=SA TO SP
480 POKE A,255
490 NEXT
500 REM BEAT ONE ADDRESS WITH 0
505 AD=SA+I
510 POKE AD,0
520 POKE AD ,0
530 POKE AD,0
540 POKE AD,0
550 POKE AD,0
560 REM CHECK ALL FOR 255 EXCEPT THE ADDRESS

BEAT WITH 0
570 FOR A=SA TO SP
580 IF A=AD GOTO 600
590 IF PEEK(A)0 2 5 5 THEN EE=1:G0SUB 800
600 NEXT
610 IF ADOSP+1 THEN 1=1+1 :P0KE AD,255:GOTO 505
620 REM ADDRESSING TEST
630 REM WRITE CONSECUTIVE INTEGERS (0-255)

ALL LOCATIONS UNDER TEST
IN

640 1=0
650 FOR A=SA TO SP
660 IF 1=256 THEN 1=0
670 POKE A,I
680 1=1+1

690 NEXT
700 REM CHECK FOR CORRECTNESS
705 1=0
710 FOR A=SA TO SP
720 IF 1=256 THEN 1=0
730 IF PEEK(A)OI THEN EE=1:G0SUB 800
740 1=1+1
750 NEXT
760 PRINT
770 IF EE=0 THEN PRINT" NO MEMORY PROBLEMS

TECTED"
DE-

780 END
800 PRINT A;
810 RETURN

3.0

2.0

u?
5

H i.o
o
o
-I

O
0 too 2 0 0 3 0 0

B Y T E S T F - S T E D

Figure 1. Graph of Log(Time Required) vs
Number of Bytes Tested. (Time in Seconds)

SMITH WARE FOR YOLIR PET

TESTED, RELIABLE SOFTWARE

FROM S B S

SB7--LIFE by Dr. Frank Covitz
Fascinating simulation of cell colony growth. Kaleidoscopic
patterns. Written in machine language with a Basic driver.
1-2 generations per second! Two versions included:
LIFE 40*25 and LIFE 64*64. Outstanding!

SB5 --BL0CKADE ..
A real-time spacewar game. Defend the rebel stronghold
against blockade by the evil empire. Your star cruiser is
the rebels' last hope. See all the action on your screen—
your keyboard is your control panel. A real challenger!

SB4--UTILITY PACKAGE ..
All the routines you need for reliable tape I/O. Plus a
tape dump, tape output demo, two memory dumps (Display
memory on the screen in hex and ASCII or decimal and ASCII),
a memory test, and two short demo programs. Worth its
weight in gold!

SB6--M0NITOR ..
3,800 bytes free for machine language programs. Save & load
absolute files, move, verify, and display a block of memory,
enter, jump to program, go-sub to subroutine. All in hex
format, written in Basic. A must for any serious computer
buff!

SB2--STARTREK ..
The classic computer game of strategy and tactics--very
complete. Defend the Federation against the Klingon menace!
You have warp engines, long and short range sensors,
galactic records, phasers, and photon torpedoes. Battle
rating controls game's difficulty. WARMING! This game may
be addictive!

SOME OR ALL OF THESE FINE CASSETTES ARE AVAILABLE AT:
The Computer Store, Santa Monica, California
Computer Components, Van Nuys, California
Advanced Computer Products, Santa Ana, California
Personal Computer Corporation, Frazier, Pennsylvania

OR SEND CHECK OR MONEY ORDER TO:

SMITH BUSINESS SERVICES
P.O. Box 1125

Reseda, CA 91335

(California residents add 6% sales tax)

$ 1 0 . 00

$ 8.00

$ 8.00

$ 12.00

$ 8 . 00

Dealer Inquiries Invited

M I C R OBES, A S U G G ESTION, A MD AIM .APOLOGY

M I C R O B E S

Ah, how often it is the things in life which
appear so simple that cause us great anguish and
gnashing of teeth. We present here what we hope
is the last microbe in "A KIM Beeper" 4:43:

The b e e p e r CHiCfZo s t i l t
doesn’t b e e p - i t (jwfjf c lic k 's *
Thte results £rot* -the.
sAA tress O tO j> , crpe.rs'tLH^ ah iur&
i J g M t t c a f opeiranJs except: -6»r i k e
■first iteration ik e a c A “b e e p ?
T h i * results i'm a z e w b e i ^ s
5to re * «'»» r e v , i .e . , n * t o ^ jU ^ S

The lo u > -o rJ e r b i t A sU0~l<*
b e s e t : b e f o r e « c (i S o f t .
vhore $i*H .pty, £o& P&V, STA P B D
vh3h be re p te e e A by ItJC P S P

2 too?*, to p r e s e r v e t k c hiamch)

The I a t - te r c ^ n ^ e is te s te A
a n A b e e p ^ S « H + K e | > a c k g r o w K < /

Q q p r M ,

XZa*\Ai) Grr<3u e s

Even "Apple Pi" isn't simple any more! Neil 0.
Lipson of the Philadelphia Apple Users Group
writes that "The Pi article by Bob Bishop (MICRO
6:15) is missing one thing. Add HIMEM:4096."
But, that's not all! John Paladini writes that:
"The value of Pi was not computed to 1000 deci
mal places, but rather 998. Such inaccuracies
occur when computing a series where billions of
calculations are required. My best guess is that
in order to calculate Pi to 1,000 places using
the given series one would have to compute to
1,004 places. The last two digits should read
89 not 96."

Although we made special efforts to make the
McCann article "A Simple 6502 Assembler for the
PET" error free, including careful proofing by
us and the author, a couple of microbes slipped
through. C. E. White and David Hustvedt wrote
about the following problems:

1. After entering the program from the keyboard
your must save it on tape before going through
"RUN" again. If you don't EN and ZZ are set to
zero .

Errors in the typed listing are:
1040 HX$+SX$... S/B HX$=SX$
4030 ; MN $ (IB);... S/B ;MN$(IB);
5020 ; TAB(27) OP S/B ; TAB(27);OP
6060 ...NULL,0,NULL, 0 S/B three NULL,0's
6100 DATA CLC, 1, . . . S/B DATA CLI, 1,
6120 ..0MI,3,... S/B ...3MPI,3,
6250 . . .C PX,2, . . . S/B ... CPXZ, 2,
14350 GOTO 14380 S/B GOTO 14460

3. When using the "BRK" command the system out
puts the error statement "ILLEGAL QUANTITY
ERROR IN 10020", READY.

A S U G G E S T I O N

We finally heard from an 0SI owner. John
Sheffield writes that the BASIC Disassembler for
Apple and PET by McCann (MICRO 5:25) can work on
an 0SI Challenger IIP with only a small change:
"In each line where BY?o appears (lines 10, 30,
3050) just change it to BY and everything works
fine. Change to read like this:

10 DIM MNf(256),BY(256),C0$(16)
30 READ MN$(E),BY(E)
delete line 100
3050 ON BY(IB) GOTO 3060,3090,4050

That's all that is needed. By the way that pro
gram works on H P ' s with 8K of RAM or more."
I would be lead to believe that the BASIC Assem
bler would work with similar modifications.

John Sheffield had a "p.s." on his letter which
said "don't let the IIP be buried under all 'he
Apples and PETs". The staff of MICRO would love
to publish material about the 0SI products, if
only we had some to print! In our first year we
received only two articles about 0SI. The first
was one we "leaned on" a friend for when MICRO
was just starting and needed material. The
second was a scathing blast at 0SI from top to
bottom by an obviously disgruntled customer! We
do not publish stronqly negative material on
the basis of a single input, and therefore this
article was not published. If there are 0SI
owners with something to share, MICRO will be
most happy to hear from you and print your info.

AN A P O L O G Y

One of the trade marks of MICRO has been qual
ity. We have made a great effort to obtain good
articles and to present them in a high quality
publication. We must therefore apoloqize for
the printing quality of MICRO number 6. By
the time we got the material back from the
printer, who had done a reasonably good job on
issues number 4 and 5, it was too late to do
anything about the inferior guality of the prod
uct except to throw out obviously bad copies.
We have gotten some letters and calls from
readers who received incomplete or unreadable
copies. If you have such a problem, please
notify us by mail indicating which pages were
defective, and we will promptly replace them.

We apologize for the poor quality of issue 6.
We have changed printers starting with this
issue, and hope that the quality will be better.

COMPUTER
SHOP 288 N O R F O L K ST. C A M B R ID G E , MASS. 02139

corner of Hampshire & Norfolk St. 617-661-2670
y

N O W W E H A V E 0 S 1
\

C3-S1 Challenger III System with
Dlial Drive Floppy Complete with 32K RAM Memory, Dual Drive
$3 590.00 Floppy, Serial Port, cabinets and power supplies.

’ " This Challenger III features an eight slot heavy- •
duty main frame. You add only a serial
ASCII Terminal.

C2-S2S 32K RAM Serial Challenger II with
Dual Drive Floppy Comes complete with 32K RAM Memory, Dual
S3 090.00 Drive Floppy Disk (500,000 characters storage),

’ " 6502 processor and serial port. You add only a
serial ASCII Terminal to be up and running.

C2-S1S Serial Challenger II with
Single Drive Floppy Comes complete with 16K RAM Memory, Single
$1,990.00 Drive Floppy Disk (250,000 characters storage),

’ 6502 processor and serial port. You need to add
only Serial ASCII Terminal.

C2-S1V Video Challenger II with
Single Drive Floppy Comes complete with 16K RAM Memory, Single
§2 490.00 Drive Floppy Disk, 6502 processor, Challenger

5 " IIP type Video Interface and high quality key
board. You add only a Video M onitor (or RF
generator and tv set).

Offers all features of the Challenger IIP plus more
room for expansion. The keyboard has a separate
case with connector cable. The roomy cabinet
and heavy duty power supply are designed to
handle up to eight system boards (allow ing fo r 6
slots of expansion).

C2-8P
Challenger IIP
with 8 Slot Cabinet
$825.00

C2-4P
Challenger IIP
$598.00

B A C , V I S A , M C NO

S I G N A T U R E .

N A M E

A DD R E S S .

C I T Y S T A T EZ IP.

K I M S AND U P G R A D E S
V F 8 4 K M e m o r y a s s e m b l e d & t e s t e d 129
for l o w p o w e r R A M a d d 10
s a m e in k i t fo r m ..74
ful l se t of s o c k e t s for K i t 10
V F 8 M o th e r b o a r d bu ffe red for 4 B o a r d s 65
C o n n e c t o r A s s e m b l y for K I M to V F 8 20
8 K S 100 M e m o r y B o a r d wi th i n s t r u e t i o n s . K 165
s ame but f u l l y a s s e m b l e d and te s t e d . . . ___ 199
C S 100 C a b i n e t cu t out for K I M129
3 C o n n e c t o r S 1 0 0 M o t h e r b o a r d A s s e m b l y 75
C G R S S 1 0 0 T I M K i t .. 129
C G R S S 1 0 0 6 5 0 2 C P U K i t179
C G R S S 1 0 0 F r o n t P a n e l K i t129
X I T E X V i d e o T e r m i n a l B o a r d 1 6 X 6 4 K 155
X I T E X V i d e o T e r m i n a l B o a r d A s s e m b l e d .. .185
K I M - 1 .. 2 45
C S 1 0 0 with C G R S , X i tex, 16K R A M , T V, K B 1529
S a m e but A s s e m b l e d 1989
P S - 5 P w r Supp. 5 V 5 A 9 V l A - 1 2 V l A 6 x 6 X 2 75
P S - 5 A s s e m b l e d .. 90.

.Total o f 0 rd e r . . C i r c l e I t em s w a n t e d . $................
M a s s . R e s i d e n t s S a l e s T a x 5%....... $........
S h i p p i n g , 1 % ($ 2 . 0 0 m in .) $
T o t a l R e m i t t a n c e or C h a r g e $

.00

.00

,50
.00
.00
.00
.00
.00
00
00
00
00
00
00
00
00
00
00
00
00

THE M I C R O S O F T W A R E C A T ALOG: IV

Mike Rowe
P.O. Box 3

So. Chelmsford, MA 01824

Name: Bridge Challenger
System: PET or Apple II
Memory: 8K PET or 16K Apple II
Language: Not specified
Hardware: Not specified
Description: Bridge Challenger lets you and the
dummy play four person Contract Bridge against
the computer. The program will deal hands at
random or according to your criterion for high
card points, and you can save hands on cassette
and reload them for later play. You can review
tricks, rotate hands East-West, shuffle only the
defense hands, or replay hands when the cards
are known.
Copies: Not specified
Price: $14.95
Includes: Not specified
Author: Not specified
Available from:

Personal Software
P.O. Box 136
Cambridge, MA 02138
617/783-0694

Name: CURSOR - Programs for PET Computers
System: PET
Memory: 8K
Language: BASIC and Assembly Language
Hardware: Standard PET
Description: CURSOR is a cassette magazine with
proven programs written just for the 8K PET.
Each month the subscriber receives a C-30 cas
sette with five or more high quality programs
for the PET. People can't read this "magnetic
magazine", but the PET can! The CURSOR staff
includes professional programmers who design and
write many of the programs. They also carefully
edit programs which are purchased from individ
ual authors.
Copies: Not specified
Price: $24 for 12 monthly issues
Includes: Cassette
Authors : Many and varied
Available from:

Ron Jeffries, Publisher
CURSOR
P.O. Box 550
Goleta, CA 93017
805/967-0905

Name: PET Schematics and PET ROM Routines
System: PET
Memory: None
Language: None
Hardware: None
Description: PET Schmatics is a very complete
set of accurately and painstakingly drawn schem
atics about your PET. It includes a 24" x 30"
CPU board, plus oversized drawings of the Video
Monitor and Tape Recorder, plus complete Parts
layout - all the things you hoped to get from
Commodore, but didn't!

PET ROM Routines are complete as
sembly listings of all 7 ROMs, plus identified
subroutine entry points.
Copies: Not specified.
Price: PET Schematics - $34.95

PET ROM Routines - $19-95
Available from:

PET-SHACK Software House
Marketing and Research Co.
P.O. Box 966
Mishawaka, IN 46544

Name: S-C Assembler II
System: Apple II
Memory: 8K
Language: Assembly language
Hardware: Apple II, optional printer
Description: Combined text editor and assembler
carefully integrated with the Apple II ROM-based
routines. Editor inclues full Apple II screen
editing, BASIC-like line-number editing, tab
stops, and renumbering. LOAD, SAVE, and APPEND
commands for cassette storage. Standard Apple
II syntax for opcodes and address modes. Labels
(1 to 4 characters), arithmetic expressions, and
comments. English language error messages.
Monitor commands directly available within as
sembler. Speed and suspension control over
listing and assembly.
Copies: Just released, over 100 sold.
Price: $20.00 (Texas residents add 5J tax)
Includes: Cassette in Apple II format and

a 28 page reference manual.
Author: Bob Sander-Cederlof
Available from:

S-C Software
P.O. Box 5537
Richardson, TX 75080

Name: PL/65 or CSL/65
System: SYSTEM 65 or PDP 11
Memory: 16K bytes RAM
Language: Machine language.
Hardware: Rockwell SYSTEM 65
Description: A high-level language resembling
PL/1 and ALGOL is now available to designers de
veloping programs for the 6500 microprocessor
family using either the SYSTEM 65 development
system of the PDP 11 computer. PL/65 is consid
erably easier to use than assembly language or
object code. The PL/65 compiler outputs source
code to the SYSTEM 65's resident assembler.
This permits enhancing or debugging at the as
sembler level before object code is generated.
In addition, PL/ 65 statements may be mixed with
assembly language instructions for timing or
code optimization.
Copies: Not specified.
Price: Not specified from Rockwell.

$500 from C0MPAS.
Includes: Minifloppy diskette.
Authors: Not specified.
Available from:

Electronic Devices Division
Rockwell Internationsal
P.O. Box 3669
Anaheim, CA 92803
714/632-2321 (Leo Scanlon)
213/386-8776 (Dan Scblosky)

COMPAS - Computer Applications Corp.
413 Kellogg
P.O. Box 687
Ames, IA 50010
515/232-8181 (Michael R. Corder)

Name: PRO-CAL I
System: PET
Memory: Not specified.
Language: BASIC and machine language.
Hardware: Not specified.
Description: A reverse polish scientific
calculator program, ideally suited for scientif
ic and educational applications. Supports sing
le key execution of more than 50 forward and in
verse arithmetic , algebraic , trigonometric and
exponential functions. It implements calcula
tions in binary, octal, decimal, and hexidecimal
modes with single keystroke conversion between
modes and simultaneous decimal equivalen dis
play. It also allows the recording and playback
of calculator programs on cassette tape permit
ting the use of most calculator software already
in existance up to a limit of 255 steps.
Copies: Not specified.
Price: $26.00 domestic, $28.00 foreign.
Includes: Software on cassette and an operating

manual.
Authors: Not specified.
Available from : 1

Applications Research Co.
13460 Robleda Road
Los Altos Hills, CA 94022

Name: MICROCHESS
Systems: PET and Apple II
Memory: PET - 8K/Apple II 16K
Language: 6502 Machine Language
Hardware: Standard PET or Apple II
Description: MICROCHESS is the culmination of
two years of chessplaying program development by
Peter Jennings, author of the famous IK byte
chess program for the KIM-1. MICROCHESS offers
eight levels of play to suit everyone from the
beginner learning chess to the serious player.
It examines positions as many as 6 moves ahead,
and includes a chess clock for tournament play.
Every move is checked for legality and the
current position is display on a graphic chess
board. You can play White or Black, set up and
play from special board positions, or even watch
the computer play against itself.
Copies: Not specified.
Price: $19-95
Includes: Not specified.
Author: Peter Jennings
Available from:

Personal Software
P.O. Box 136
Cambridge, MA 02138
617/783-0694

Name: Financial Software
System: Apple II (easily modified for PET)
Language: Applesoft II
Hardware: Apple II
Description: Sophisticated financial programs
used to aid in investment analysis. The follow
ing programs are currently available: Black-
Scholes Option Analysis, Security Analysis using
the Capital Asset Pricing Model, Bond Pricing I
and II, Cash Flow and Present Value Analysis I
and II, Stock Valuation, Rates of Return, Calcu
lations and Mortgage Analysis.
Copies : Just released.
Price: $15.00 each or $50.00 for all 9 programs
Includes: Cassette, annotated source listings,

operating and modifying instructions,
sample runs and backgroud information.

Author: Eric Rosenfeld
Available from:

Eric Rosenfeld
70 Lancaster Road
Arlington, MA 02174

Name: Apple II BASEBALL
System: Apple II
Memory: 16K or more
Language: Integer BASIC
Hardware: Standard Apple II
Description: An interactive baseball game that
uses color graphics extensively. You can play a
7 or 9 inning game with a friend, (it will han
dle extra innings) , or play alone against the
computer. Has sound effects with men running
bases. Keeps track of team runs, hits, innings,
balls and strikes, outs, batter-up and uses pad
dle input to interact with the game. Uses every
available byte of memory.
Copies : Just released.

(Dealers inquiries invited)
Price: $12.50
Includes; Game Cassette, User Bookelt with com
plete BASIC listing.
Authors: Pat Chirichella and Annette Nappi
Available from:

Pat Chirichella
506 Fairview Avenue
Ridgewood, NY 11237

Name: DDT- 65 Dynamic Debugging Tool
System: Any 6502 based system
Memory: 3K RAM/1K RAM for loader
Language: Machine Language
Hardware: 32 char/line terminal
Description: DDT-65 is an advanced debugger
that allows easy assembly and disassembly in
650X mnemonics. Software single-stepping and
automatic breakpoint insertion/deletion allow
debuffing of code even in PROM. DDT-65 comes in
a relocatable form on tape for loading into any
memory or for PROM programming.
Copies: 11+
Price : $25■00
Include: 10 page manual, relocating tape

cassette .
Ordering Info: KIM format cassette - K

Kansas City at 300 baud for 0SI - 0
Kansas City at 300 baud for TIM/JOLT - T

Author: Rich Challen
Available from:

Rich Challen
939 Indian Ridge Drive
Lynchburg, VA 24502

A P P L E C A L L S A N D H E X - D E C I N A L C O N V E R S I O N

Marc Schwartz
220 Everit Street

New Haven, CT 06511

Rich Auricchio's "Programmer's Guide to the
Apple II" (MICRO #4, April/May 1978) is a very
useful step in getting out printed materials to
help users fully exploit the Apple's potential.
That his table of monitor routines can be used
in BASIC programming is worth noting.

Many monitor routines can be accessed in BASIC
by CALL commands addressed to the location of
the first step of the routine. If the routine
is located in hex locations 0000 to 4000, it is
necessary only to convert the hex location to
decimal and write CALL before the decimal num
ber. Thus a routine located at hex IE would be
accessed by the command: CALL 30, since hex 001E
= decimal 30.

If you do no.t have a hex-decimal conversion
table handy, you can convert larger numbers to
decimal with the help of the Apple by the fol
lowing steps:

1. Start in BASIC (necessary for step 2)
2. Multiply the first (of four) hex digits

by 4096, the second by 256, the third by 16 and
the fourth by one. Add the four numbers to get
the decimal equivalent. For example, to get the
decimal conversion of 03E7, with the Apple in
BASIC, press Control/C and type

>PRINT 0*4096 + 3*256 + 14*16 + 7
then press RETURN. You'll get your decimal
answer: 839- To begin a monitor routine you
wrote starting at 03E7, merely put CALL 839 in
.your program.

If the hex location of the routine is between
C000 and FFFF, then another method of figuring
out the corresponding decimal location must be
used.

1. Start in BASIC

2. Press the RESET button.
3. Take the hex location of the routine and

subtract if from FFFF. The Apple will help you
do this; subtract each pair of hex digits from
FF and press RETURN. The Apple will print the
answer to each subtraction for you. For example
the hex location of the routine to home cursor
and clear screen is $FC58.

* FF - FC RETURN
= 03

* FF - 58 RETURN
= A7

So, $FFFF - $FC58 = $03A7.

Now convert to decimal as above, using BASIC
(control/C) to assist you.

>PRINT 0*4096 + 3*256 + 10*16 + 7

and after pressing RETURN you will have your
answer, 935.

4. Add one to the total, here giving 936.
5. Make the new total negative, or -936.
6 . That's it. Now just put a CALL in front

of the number: CALL -936.

Of course, these steps of converting hex loca
tions to decimal are the same ones to take if
you want to access the PEEK or POKE functions of
the Apple. In all, they allow the BASIC pro
grammer to take much fuller advantage of the
capabilities of the computer.

And while on the subject of hex-decimal conver
sion, the Apple can help in decimal to hex con
version as well. For example to find the hex of
a number, say 8765:

1. Start in BASIC

2. Divide the number by 4096, then find the
remainder:

>PRINT 8765/4096,8765M0D4096 (return)
2 573

3 . Repeat the process with 256 and 16:

>PRINT 573/256,573MOD256 (return)
2 61

>PRINT 61/16, 61 MOD 16 (return)
3 13

...giving 2 2 3 13 or 223C.

W R I T I N G FOR M I C R O

One of the reasons we like the 6502 is that it
seems to attract a lot of very interesting, act
ive, enthusiastic users. We spend several hours
each week talking to people who are so excited
about what they are doing with their system that
they just have to talk to someone. Oh, some
times they pretend they have some "burning"
question or whant to order some small item, but
really they mostly want to tell someone about
all of the fun they are having or the discover
ies they are making.

While we enjoy these conversations, and consider
them one of the "Fringe benefits" of editing
MICRO, it disturbs us that many of these enthus
iasts who are willing to spend five to ten dol
lars on a phone call to us, are not willing to
spend a little time writing down their informa

tion for publication in MICRO where thousands
can share it (and they can earn a few dollars).

MICRO, in order to serve its main purpose of
presenting information about all aspects of the
6502 world, needs to receive information from a
wide variety of sources. To achieve a more bal
anced content, we desparately need articles on:
industrial, educational, business, home, and
other real applications of systems; non-KIM,
-APPLE, -PET systems, homebrew and commercial;
techniques for programming, interfacing, and ex
panding systems; and many other topics. Look to
your own experience. If you have anything to
share, then take the time to write it down. The
"Manuscript Cover Sheet" on the next page should
serve as a guide and make it a little easier to
submit your article.

7:31

M A N U S C R I P T CO VER SHEET

Please complete all information requested on this cover sheet.

Date Submitted: __________________ _________________________________

Proposed Title: .__

Author(s) Name(s):

Mailing Address: - .

(This will be published.)

Area Code: Phone:
(This will NOT be published.)

AUTHOR'S DECLARATION OF OWNERSHIP OF MANUSCRIPT RIGHTS: This manuscript is my/our
original work and is not currently owned or being considered for publication by
another publisher and has not been previously published in whole or in part in
any other publication. I/we have written permission from the legal owner(s) to
use any illustrations, photographs, or other source material appearing in this
manuscript which is not my/our property. If required, the manuscript has been
cleared for publication by my/our employer(s). Note any exceptions to the above
(such as material has been published in a club newsletter but you still retain
ownership) here:

Signature(s):

Date:

Any material which you are paid for by The COMPUTERIST, whether or not it is
published in MICRO, becomes the exclusive property of The COMPUTERIST, with all
rights reserved.

A Few Suggestions

All text material will be retyped. Therefore your format does not matter as long
as it is readable. Double spaced, typed, is preferable, but not required. Any
figures should be neatly drawn to scale as they will appear in MICRO. If we have
to redraw the figures and diagrams, then we normally will pay less for that page.
Photographs should be glossy prints either the same size as the final will be or
twice the final size. We will re-assemble all programs to obtain clean listings
using the syntax we have adopted (see inside back cover - MICRO #1). Since others
will be copying your code, please try to thoroughly test it and make sure it
is as error free as possible. Submit your articles early. We will try to get a
proof back to you for final correction, but with our tight schedule this may not
always be possible. Send your manuscripts to:

Robert M. Tripp, Editor, MICRO, P.O. Box 3i So. Chelmsford, MA 01824, U.S.A.

7:32

6502 B I B L I O G R A P H Y
P ART VI

William R. Dial
438 Roslyn Ave.
Akron, OH 44320

Bridge, Theodore E. "High Speed Cassette I/O for the KIM-1", DDJ 2 Issue 6 No 26, Pg 24-25,
(June/July, 1978). Will load or dump at 12 times the speed of KIM-1. Supplements the
MICRO-ADE Editor-Assembler.

Baker, Robert "KIMER: A KIM-1 Timer", Byte 3 No 7 Pg 12, (July, 1978). The program converts
the KIM-1 into a 24-hr digital clock.

Conley, David M. "Roulette on Your PET with Bells and Whistles", Personal Computing 2. No 7 Pg 22
24 (July, 1978). How to add extras in a program for added interest.

KIM-1/6502 User Notes, Issue 11, (May, 1978)
Lewart, Cass R. "An LED Provides Visual Indication of Tape Input". An LED allows you to see

that the tape recorder is feeding proper signals to KIM.
Rehnke, E. "Hardware Comparison". The editor compares KIMSI vs. KIM-4 as expansion for KIM .
Rehnke, E. "Software Comparison". The editor compares the MOS Technology Assembler/Editor

from ARESCO versus the MICRO-ADE Assembler/Disassembler/Editor from Peter Jennings,
Toronto.

Edwards, Lew "Skeet Shoot, with Sound". Butterfield's "Skeet Shoot" modified with the Kush-
nier's phaser sound routine, for KIM.

DeJong, Marvin "Digital Cardiotachtometer". KIM counts heartbeats per minute and displays
count while measuring next pulse period.

Rehnke, E. "Book review: 'Programming a Microcomputer: 6502'". Foster Caxton's recent book
is highly recommended.

Coppola, Vince " Loan Program in FOCAL". F0CAL-65 is used to figure interest on a loan.
Flacco, Roy "Joystick Interface". A joystick, some hardware, are used to put the Lunar

Lander (First Book of KIM) on the face of a Scope.
Kurtz, Bob "Morse Code Reader Program". Use KIM in the hamshack.
Zuber, Jim "Interfacing the SWTPC PR-40 Printer to KIM-1". An easy way to use this low cost

printer.
Nelis, Jody "Revision to Battleship Game". Modification to correct a small defect in the

original program.

People's Computers 2 No 1 (July/Aug, 1978).
Cole, Phyllis "SPOT". Several notes and tips of interest to PET owners.
Cole, Phyllis "Tape Talk". Notes on problems associated with tape I/O on the PET.
Gash, Philip "PLOT". Program plots any single-valued function y(x) on a grid.
Julin, Randall "Video Mixer". A circuit to mix the three video signals put out by the

PET's IEEE 488-bus.
Bueck/Jenkins "PETting a DIABLO". How to make PET write using a Diablo daisy wheel printer

Harr, Robt. Jr. and Poss, Gary F. "TV Pattern Generator", Interface Age 3 Issue 8 Pg 80-82; 160,
(Aug, 1978). Pattern generator in graphics for the Apple II monitor.

Personal Computing Z No 8 (Aug, 1978).
Maloof, Darryl M. "PET Strings" (letter to Editor). Note on changing a character string

to numeric values and vice-versa.
Connors, Bob "PET Strings" (letter to Editor). More on changing character strings to

numeric values.
Bueck/Jenkins "Talking PET" (letter to the Editor). Notes on the interfacing of a Diablo

daisy wheel printer with PET through the PET ADA device.

Lasher, Dana "The Kalculating KIM-1", 73 Magazine, No 215 Pg 100-104 (Aug, 1978). Calculator
versatility for any KIM is provided by interfacing a calculator chip and a scanning routine
with KIM.

OSI-Small Systems Journal 2. No 2 (Mar/Apr, 1978).
Anon. "The 542 Polled Keyboard Interface". Polled keyboards have many advantages over

standard ASCII keyboards.
Anon. "Basic and Machine Code Interfaces". This is the first in a series of articles on

BASIC and machine code.
Anon. "Using the Model 22 0KIDATA Printer". A quick and dirty way to use those special

font and scroll commands of the Model 22 0KIDATA Printer.

370.

371.

372.

373-

374.

375.

376.

377.

378.

379-

Dr. Dobbs Journal 3 Issue 7 No 27 (Aug, 1978).
Moser, Carl "Fast Cassette Interface for the 6502". Record and load at 1600 baud.
Meyer, Bennett "Yet Another 6502 Disassembler Fix". Changes to correct a number of errors

in the five digit codes used for deciphering the instructions in the BASIC language
disassembler published earlier in DDJ 3. No 1.

Anon. "Apple Users Can Access Dow Jones Information Service". With a telephone link-up,
Apple II users can dial Dow Jones Information Service.

Kilobaud Issue 21 (Sept, 1978).
Wells, Ralph "Trouble Shooters’ Corner". Another chapter in the saga of the compatibility

of the Apple II with a VIA/PIA. See EDN May 20,1978; MICRO Issue 5, Pg 18, June/July,
1978.

Tenny, Ralph "Troubleshooters’ Guide". Useful suggestions for those tackling repair and
interfacing problems.

Young, George "Do-It-All Expansion Board for KIM". How to make an expansion board, expan
sion power supply, new enclosure, etc., for your KIM-1.

Ketchum, Don "KIM Organ". Play tunes directly from the KIM keyboard.
Grina, James "Super Cheap 2708 Programmer". An easy-to-build PROM programmer driven by

the KIM-1.

Conway, John "Glitches Can Turn Your Simple Interface Task into a Nightmare". Difficulties
in using an Apple II with a PIA in an I/O interface, apparently caused by a clock signal
arriving a little early.

Notley, M. Garth "Plugging the KIM-2 Gap". Byte 3 No 9 Pg 123 (Sept, 1978). How to map the
KIM-1 address range of 0400 to 13FF into a KIM-2 address range of 1000 to 1FFF.

Turner, Bill and Warren, Carl "How to Load Floppy ROM No 5", Interface Age 3 No 9 Pg 60-61
(Sept, 1978). Side No 1 is in Apple II format at 1200 baud, "The Automated Dress Pattern".

Smith, Wm. V.R. Ill "The Automated Dress Pattern for the Apple II". Interface Age 3 No 9
Pg 76-81 (Sept, 1978). A McCalls pattern is the basis for the program and accompanying
Floppy ROM.

MICRO Issue 6 (Aug/Sept, 1978).
Husbands, Charles R. "Design of a PET/TTY Interface". Describes the hardware interface and

software to use the ASR 33 Teletype as a printing facility for the PET.
Faraday, Michael "Shaping Up Your Apple". Information on using Apple II's High Resolution

Graphics.
Eliason, Andrew H. "Apple II Starwars Theme". Disassembler listing of theme from Star Wars.
Bishop, Robert J. "Apple PI". How to calculate PI to 1000 places on your Apple II.
McCann, Michael J. "A Simple 6502 Assembler for the PET". Learn to use Machine language

with this assembler.
Rowe, Mike "The Micro Software Catalog: III". Software listing for 6502 systems.
Gaspar, Albert "A Debugging Aid for the KIM-1". A program designed to assist the user in

debugging and manipulating programs.
DeJong, Marvin L. "6502 Interfacing for Beginners: Address Decoding II". Good tutorial

article.
Suitor, Richard F. "Brown and White and Colored All Over". Discussion of the colors in the

Apple and their relation to each other and the color numbers.
Witt, James R. "Programming a Micro-Computer: 6502 by Caxton Foster". More accolades for

this fine book.
Merritt, Cal E. "PET Composite Video Output". How to get video output for additional

monitors.
Quosig, Karl E. "Power from the PET". How to tap the unregulated 8v and regulate to 5v.
Suitor, Richard F. "Apple Integer BASIC Subroutine Pack and Load". Loading assembly

language programs with a BASIC program.
Creighton, Gary A. "A Partial List of PET Scratch Pad Memory”. Tabulation of a number of

important addresses.

Corbett, C. "A Mighty MICROMITE". Personal Computer World 1 No 4 Pg 12 (Aug, 1978). Descriptive
article on the KIM-1 for the European and British readers.

Coll, John and Sweeten, Charles "Colour is an Apple II". Personal Computing World J. No 4 Pg
50-55 (Aug, 1978). Description of the Apple II.

North, Steve "PET Cassettes from Peninsula School". Creative Computing 4. No 5 Pg 68 (Sept/Oct,
1978). A number of programs written in PILOT, a language designed for CAI dialog applica
tions. This requires a program to interpret PILOT in Basic.

6502 I N F O R M A T I O N R E S O U R C E S

William R. Dial
438 Roslyn Ave.
Akron, OH 44320

Did you ever wonder just what magazines were the
richest sources of information on the 6502
microprocessor, 6502-based microcomputers, acc
essory hardware and software? For several years
this writer has been assembling a bibliography
6502 references related to hobbv computers and
small business systems (see MICRO No's 1, 3,
4, 5, and 6). A review of the number of times
various magazines are cited in the bibliography
gives a rough measure of the coverage of these
magazines of 6502 related subjects. Even after
such a fequency chart is compiled, an accurate
comparison is difficult. Some of the magazines
have been published longer than others. Some
periodicals have been discontinued, others have
been merged with continuing publications. Some
give a lot of information in the form of ads,
others are devoted mostly to authored articles.
Regardless of the basis of the tabulation of
references, however, some publications are
clearly more useful sources of information on
the 6502 than others.

The accompanying list of magazines has been
compiled from the bibliography. At the top of
the list are several publications which special
ize in 6502-related subjects. These include
this publication, MICRO, as well as the KIM-1
/6502 USER NOTES. Also in this category is
OHIO SCIENTIFIC'S SMALL SYSTEMS JOURNAL, a
publication which covers hardware and software
for the Ohio Scientific 6502-based computers.
KILOBAUD, BYTE and DR. DOBB'S JOURNAL all give
good coverage on the 6502 as well as other
microprocessors. KILOBAUD has more hardware and
constructional articles than most computer mag
azines. ON-LINE is devoted mainly to new pro
duct announcements and has very frequent refer
ences to 6502 related items. Following these
come a group of magazines with somewhat less
frequent references to the 6502. Finally toward
the end of the list are those magazines with
only occasional or trivial references to the
6502. An attempt has been made to give up-to-
date addresses and subscription rates for the
magazines cited .

MICRO
$6.00 per 6 issues

MICRO
P.O. Box 3
S. Chelmsford, MA 01824

KIM-1/6502 USER NOTES
$5.00 per 6 issues

Eric Rehnke
P.O. Box 33077
Royal ton, OH 44133

OHIO SCIENTIFIC—SMALL SYSTEMS JOURNAL
$6.00 per year (6 issues)

Ohio Scientific
1333 S. Chillicothe Rd.
Aurora, OH 44202

KILOBAUD
$15-00 per year

Kilobaud Magazine
Peterborough, NH 03458

BYTE
$12.00 per year

Byte Publications, Inc.
70 Main St.
Peterborough, NH 03458

DR. DOBB'S JOURNAL
$12.00 per year (10 issues)

People's Computer Co.
Box E
1263 El Camino Real
Menlo Park, CA 94025

ON-LINE
$3-75 per year (18 issues)

D. H. Beetle
24695 Santa Cruz Hwy
Los Gatos, CA 95030

PEOPLE'S COMPUTERS (Formerly PCC)
$8.00 per year (6 issues)

People's Computer Co.
1263 El Camino Real
Box E
Menlo Park, CA 94025

INTERFACE AGE
$14.00 per year

McPheters, Wolfe 4 Jones
16704 Marquardt Ave.
Cerritos, CA 90701

POPULAR ELECTRONICS
$12.00 per year

Popular Electronics
One Park Ave.
New York, NY 10016

PERSONAL COMPUTING (Formerly MICROTREK)
$14.00 per year

Benwill Publishing Corp.
1050 Commonwealth Ave.
Boston, MA 02215

73 MAGAZINE
$15.00 per year

73, Inc.
Peterborough, NH

CREATIVE COMPUTING
$15-00 per year

Creative Computing
P.O. Box 789-M
Morristown, NJ 07960

SSSC INTERFACE
(Write for information)

Southern California Computer Soc.
1702 Ashland
Santa Monica, CA 90405

EDN (Electronic Design News)
$25-00 per year
(Write for subscription info)

Cahners Publishing Co.
270 St Paul St.
Denver, CO 80206

RADIO ELECTRONICS

$8.75 per year
Gernsback Publications, Inc.
200 Park Ave., South
New York, NY 10003

QST
$12.00 per year

American Radio Relay League
225 Main St.
Newington, CT 06111

IEEE Computer
(Write for subscription info)

IEEE
345 E. 47th St.
New York, NY 10017

ELECTRONICS
$14.00 per year

Electronics
McGraw Hill Bldg.
1221 Ave. of Americas
New York, NY 10020

POLYPHONY
$4.00 per year

PAIA Electronics, Inc.
1020 W. Wilshire Blvd.
Oklahoma City, OK 73116

CALCULATORS, COMPUTERS
$12.00 per year (7 issues)

Dynax
P.O. Box 310
Menlo Park, CA 94025

COMPUTER MUSIC JOURNAL
$14.00 per year (6 issues)

People's Computer Co.
Box E
1010 Doyle St.
Menlo Park, CA 94025

POPULAR COMPUTING
$18.00 per year

Popular Computing
Box 272
Calabasas, CA 91302

MINI-MICRO SYSTEMS
$18.00 per year

Modern Data Service
5 Kane Industrial Drive
Hudson, MA 01749

DIGITAL DESIGN
$20.00 per year
(Write for subscription info)

Benwill Publishing Corp.
1050 Commonwealth Ave.
Boston, MA 02215

ELECTRONIC DESIGN
(26 issues per year)
(Write for subscription info)

Hayden Publishing Co., Inc
50 Essex St.
Rochelle Park, NJ 07662

HAM RADIO
$12.00 per year

Communications Technology
Greenville, NH 03048

COMPUTER WORLD
$12.00 per year (trade weekly)
(Write for subscription info)

Computer World
797 Washington St.
Newton, MA 02160

Editor's Note: In addition to the magazines
regularly covered by the 6502 Bibliography, the
following magazines may also be of interest to
various 6502 readers:

PET GAZETTE
Free bi-monthly (Contributions Accepted)

Microcomputer Resource Center
1929 Northport Drive, Room 6
Madison, WI 53704

Robert Purser's REFERENCE LIST
OF COMPUTER CASSETTES

Nov 1978 $2.00/Feb 1979 $4.00
Robert Purser
P.O. Box 466
El Dorado, CA 95623

THE SOFTWARE EXCHANGE
$5.00 per year (6 issues)

The Software Exchange
P.O. Box 55056
Valencia, CA 91355

THE PAPER
$15-00 per year (10 issues)

The PAPER
P.O. Box 43
Audubon, PA 19407

PET USER NOTES
$5.00 per year (6 or more issues)

PET User Group
P.O. Box 371
Montgomeryville, PA 18936

CALL A.P.P.L.E
$10.00 per year (includes dues)

Apple Puget Sound Program Library Exchar
6708 39th Ave. SW
Seattle, WA 93136

KI M-1 AS A D I G I T A L V O L T M E T E R

Joseph L. Powlette and Charles T. Wright
Hall of Science, Moravian College

Bethlehem, PA 18018

Several programs have been described in the lit
erature which turn a KIM-1 microcomputer into a
direct reading frequency counter. In "A Simple
Frequency Counter Using the KIM-1" by Charles
Husbands (MICRO, No. 3, Pp. 29-32, Feb/Mar,1978)
and in "Here's a Way to Turn KIM Into a Freq
uency Counter" by Joe Laughter (KIM User's Note
Issue 3, Jan, 1977), good use is made of KIM-1's
interval timers and decimal mode to produce a
useful laboratory instrument. A simple change
in hardware will allow these same programs to
serve as the basis of a direct reading digital
voltmeter. This article describes an inexpen
sive voltage-to-frequency converter (VFC) cir
cuit which is compatible with these programs and
also describes some software modifications which
will allow Husbands' program to operate down to
low frequency (10 HZ) values.

Hardware Configuration

The VFC circuit is shown in Figure 1. The 4151
chip is manufactured by Raytheon and is avail
able from Active Electronic Sales Corp., P.O.
Box 1035, Framingham, MA 01701 for $5.00 or from
Jameco Electronics, 1021 Howard Street, San
Carlos, CA 94070 for $5.95. The circuit param
eters given in Figure 1 have been modified from
the values suggested by the manufacturer in
order to match the pulse requirement for the KIM
IRQ signal. The frequency of the output pulse
is proportional to the input voltage and the 1K<.
(multiturn) trimpot is used to adjust the full-
scale conversion so that 10 volts corresponds to
a frequency of 10 KHz. It is not necessary to
calibrate the KIM-1 as a frequency meter since
any variation in its timing can be compensated
for by the trimpot. A known potential is con
nected to the VFC input and the trimpot adjust
ed until the KIM readout agrees with the known
voltage value. The linearity of the VFC is
better than 1J down to 10 mv (linearity of 0.05J
can be achieved in a "precision mode" which is
described in the Raytheon literature). The
circuit will not respond to negative voltages
and protection of the chip is provided by the
1N914 diode. If negative voltage readings are
also required, the input to the VFC can be pre

ceded by an absolute value circuit (see IC OP-
AMP cookbook by Jung, p. 193, Sams Pub.).

To operate the system using Laughter's software
the following connections should be made: 1)
the output (pin 3) of the VFC to the PBO input
of KIM (pin 9 on the application connector) and
2) PB7 on the KIM to IRQ on the KIM (A-15 to E-
4). Execution of the program should cause the
voltage to flash on the KIM display in one sec
ond intervals.

The software described in Husbands' article will
not operate below 500 Hz. This limit is caused
by the fact that the contents of the interval
timer are read to determine if the 100 millisec
ond interval has elapsed and since the interval
counter continues to count (at a 1T rate) after
the interval has timed out, there are times when
the contents of the interval timer are again
positive. If the interrupt should sample during
this time, the branch on minus instruction will
not recognize that the interval has elapsed.
This problem will manifest itself as a fluctuat
ing value in the display and is most likely to
occur at low frequencies. One solution is to
establish the interval timer in the interrupt
mode and then allow the program to arbitrate the
interrupt, i.e., to determine whether the inter
rupt was due to the input pulse or the expira
tion of the 100 millisecond interval timer. The
necessary changes to Husbands' program are given
in Figure 2. The hardware connections are: 1)
output of the VFC (pin 3) to the KIM IRQ (pin 4
on the KIM expansion connector) , and 2) PB7 on
the KIM to HfQ on the KIM (A-15 to E-4). The
modified program starts at 0004 with a clear
interrupt instruction. Locations 17FE and 17FF
should contain 21 00 and 17FA and 17FB should
have values 00 10 (or 00 1C).

+ I2V

Vollaqe input
0 to + 10 V

IOOK |N9I4
O—wv

,0,JlfX 5
ipf

- IOOK

•6.8K-
X
X

8 I

7 2

4I5I
VFC

r p -
6 3

5 4

0.0033pf

TO PIN 6

IK TRIM POT

o
frequency
output

+ 12 V

Figure 1. Voltage-to-Frequency Converter (VFC)
circuit.

sauaa® 7:37

Additional Comments

The program modifications above will also extend
Husbands’ frequency counter circuit down to 10
Hz (corresponding to 1 input interrupt in 100
milliseconds). Since the 74121 monostable mul
tivibrator does not have an open collector
output, PB7 should not be connected (along with
the 74121 output) directly to the KIM IRQ. Two
solutions are:

1. Leave PB7 unconnected. The expir
ation of the 100 millisecond clock will
be recognized on the next input interrupt
after the timer has timed out. The int
erval timer will not interrupt the micro
processor, however.

2. Connect PB7 to one input of a two input
AND gate and the output of the monostable
to the second input. The output of the
AND gate should be connected to the KIM
IRQ. The expiration of the 100 millisec
ond interval will now also interrupt the
processor and will result in a faster
response to a change in frequency values
(from high to very low) as well as a more
accurate low frequency count.

The authors would like to thank Charles Husbands
for taking the time to answer our questions and
for pointing out the article by Laughter.

ORG $ 0004

0004 58 CLI clear interrupt flag

0014 8D OF 17 STA clock in interrupt mode

0024 AD 07 17 LDA read interrupt flag bit 7

003C 8D OF 17 STA clock in interrupt mode

Figure 2 Changes in Husbands' program to ext-
end the low frequency range to 10 Hz.

H E L P I N G M I C R O H E L P YOU

MICRO is published for a number of reasons. One
very important reason is to provide a means for
the distribution of information about 6502 re
lated products. Our advertising rates are very
low in relation to our circulation and special
ized audience, and we welcome your money, but
that is not what we want to discuss here. MICRO
offers several ways for you to get good public
ity - TREE ! It will take a little work on your
part, but the price is right. There are three
regular ways to get coverage in MICRO: the soft
ware catalog, the hardware catalog, and the list
of 6502 related companies.

THE MICRO SOFTWARE CATALOG

Appearing regularly since issue number 4, the
software catalog provides a brief, standardized,
description of currently available 6502 soft
ware. We were a bit surprized to find that the
software catalog was one of the most often men
tioned articles in the recent MICRO Reader Feed
back. To participate in this catalog, you must
follow a few simple rules:

1. The program must be currently available,
not "under development".

2. You must provide the write-up following
the standard format which is:

1. The product must be currently available,
either in stock or within four weeks
delivery on new orders. Some units must
have already been successfully delivered.

2. You must provide the write-up following
the standard format which is:

Name of product:
6502 systems it works with:
Other hardware required:
Power requirements:
Description of product:
Number of units delivered to date:
Price :
Includes: (Manuals, Cables,...)
Developed by:
Available from:

A lot of material that has been received for the
Catalogs has not been in a useable format. We
are not trying to make it difficult for you to
submit your material. We are trying to make it
easy for the readers to understand your product.
We do not understand your product as wel1 as you
do and can not therefore do as good a write-up
as you can. And, we don't have any more time
than you do! So, please submit your stuff in
the requested format and we will print it.

Name of program:
6502 system(s) it works on:
Memory required:
Language used (Assembler, BASIC,...):
Hardware required:
Description of program:
Number of copies in circulation:
Price:
Includes:
Author :
Available

(Cassette, Source listings,,

from:

THE MICRO HARDWARE CATALOG

In issue number 6 we printed a call for hardware
information for a Hardware Catalog. The formats
of the material we received was so varied, that
we have decided to impose a format for the sake
of •= "-re useful presentation of the material.
To participate in this catalog, you must follow
these rules:

6502 RELATED COMPANIES

In issue number 1 we printed a list of companies
that we were aware of which produced products of
interest to the 6502 world. It is time to up
date the list. If you fee] that your company
should be on the list, then send in the follow
ing information as soon as possible:

Name of company:
Address:
Telephone: (Optional)
Person to contact: (Optional)
Brief list of 6502 products: (Maximum of

five typed linen, please)

While the Software and Hardware Catalogs will be
appearing regularly in every issue, this list of
6502 Related Companies will only appear once, in
issue number fl, the Dce/Jan issue. Therefore,
send your information in as soon as possible.

: 30

C A S S E T T E TAPE C O N T R O L L E R

Fred Miller
7 Templar Way

Parsippany, N3 07054

The ideal tape storage facility for micro-sys
tems would be one in which the micro has comp
lete control of all tape movement and play/
record functions without "operator intervention"
e.g. pushing buttons. Unfortunately most of us
have budgets which only allow use of lower cost
audio cassette units. Short of massive mechan
ical rebuilding, these units can only be extern
ally controlled with a motor on/off function
after tne "operator" has set the proper record/
play keys. All too often we goof and press the
wrong button, have to move cassettes from one
unit to another, or simply forget to set up the
units at the right time.

The Cassette Tape Controller (CTC) described
below offers a reasonably inexpensive capabil
ity as a compromise in the provision of automat
ic tape control for a KIM-1 system. CTC is a
combination of a seven-IC hardware board and
supporting software routines. It was developed
to control two Pioneer Centrex KD-12 cassette
units. The concept could be extended to more
than two units or perhaps other models.

A summary of the functions provided are:

(1) Provide software-driven capability to start
and stop a specific tape recorder by opening/
closing the "remote control" circuit of the re
corder (normally controlled by a switch on an
external microphone) .

(2) Provide software-driven capability to route
the input (record) or output (playback) signals
as appropriate.

(3) Provide override manual controls (toggles)
to also accomplish (1) and (2), above.

(4) Light panel indicators (LEDs) associated
with the play or record functions selected for
each cassette unit as set by software or manual
controls.

(5) Sense whether the selected tape recorder is
set to play or record, or neither.

(6) Sense the position of auxiliary toggles for
setting software options, etc., (option
switches.

(7) Light indicators (LEDs) associated with the
auxiliary toggles for operator communications.

(8) Provide an audible "beep" under software
control.

CTC General Description

The Cassette Tape Controller is a hardware/soft
ware facility to assist in the operation and use
of audio cassette tape recorders for data read/
write functions. The hardware provides the int
erface from a KIM-1 to two Pioneer Centrex KD-12
tape recorders. Besides the cassette input and
output lines from KIM-1 four other lines (bit
ports) are required for software control of the
hardware.

The software and hardware control the recorder's
motor circuits and determine if the appropriate
manual keys on the recorder are set correctly.
The software can provide alternative action
(alert the operator or try another unit) in the
case of improperly set keys.

The specific software illustrated below is writ
ten to "search" for a unit which is set in eith-
a "read" (playback) or "write" (record) mode.

If none is found in the desired mode, an audible
tone is sounded and the search is continued.
The visible indication of each of the "read" or
"write" LEDs blinking along with the audible
tone provides the operator with a quick clue as
to the erroneous settings. If the appropriate
tapes are "mounted" the operator simply depress
es the "requested" cassette unit key. Subse
quent references by the software would locate
the preset unit without communicating to the
operator.

Additional facilities are built into the CTC
hardware/software at little extra cost. These
include the separately accessible audible tone
and two option toggles with accompanying panel
indicator LEDs. The toggles can be used for set
ting options selected by the operator and test
ed by the software. The associated indicators
can also be used for some optional communication
purposes. A third switch (momentary toggle or
pushbutton) is used as a "break" command for
software testing. A layout of the related hard
ware control panel is shown in Fig. 1.

Figure 1.
Suggested Panel Layout

for Cassette Tape Controller

Hardware Description

A key to the logic of CTC is the ability to sen
se actual cassette unit key settings. By sens
ing voltage levels at two externally accessible
points in the KD-12 circuitry it is possible to
determine one of the following states:

(1) unit set for read (playback)
or fast forward or rewind

(2) unit set for write (record)

(3) no keys depressed

The circuit shown in Fig. 2 uses two ICs to ad
dress a function, one to enable and the other to
sense results of enabling. This logic is fur
ther described in the comments accompanying the
software source listing. Four non-critical DPDT
relays are used to allocate signals and control

motor circuits. The additional circuits, (1)
pulse an audible tone generator, (2) light LED
indicators, or, (3) sense toggle switch posit
ions all depending upon addressed functions.

Three bits (PB 0-2) from KIM-1 Applications Port
B are used to address the functions. Another
bit line (PB 3) of the same port is used to feed
status back to KIM-1.

The KD-12 units are operated from external batt
ery power (continually trickle-charged) to pro
vide the most stable unit operation. HYPERTAPE
speeds are extremely reliable in this configur
ation .

Software Description

The controlling software consists of a series of
routines which are accessible from user programs.
The software shown in Fig. 3 is designed to
"seek out” a cassette unit which is set for a
given function, e.g., read. A brief study of the
routines will show how this can be replaced or
amended to select only a given cassette unit for
a specific function. The additional routines
are provided for "testing" the optional toggle
switches, etc. Many of the routines are useful
for other than tape cassette control, e.g.,
a JSR to BELL provides an audible "beep".

Conclusion

The hardware and software described have been
working very satisfactorily on the author’s
system for well over a year. The CTC software
(along with tape and record I/O routines based
on the HYPERTAPE routines) have been committed
to EPROM (2708). Access to this capability is
easy and provides convenient operation of tape

file processing from user software programmed in
any language used on the KIM-1 micro (BASIC,
Assembler, HELP, etc.). Although the operator
still must press the keys on the cassette units,
the CTC system can save many a ''rerun" or clob
bered files due to careless operations.

Author's KIM Based System

AUK
IMPUT

tt l i 41

curPoT
111 EesistcQS
«. <A werr

UuusiG O T .ietlu»S>£
Stores

Tome- a u M f f r dLettxV

Figure 2.

Cassette Tape Controller (CTC)
Circuit Diagram

K X F T A P ORG £ 0 2 0 0

* * * * * * * * * * * * * * * * * * * *

* *

* C A S S E T T E T A F E *
* C O N T R O L L E R (C T C) *
* EY F. M I L L E R *
* *

* * * * * * * * * * * * * * * * * * * *

* * * K I M & Z E R O P A G E P A R A M E T E R S * * *

F E L * i 1 702
F E L L * S 1 70 3
T F F C T * £ OOEF
I N I T * £ 1 ES C

* * * T A P E C A S S E T T E R E A D R O U T I N E S * * *

001 0 0 2 0 0
0020
0030
0C4C
00 50
00 60
0070
008 0
009 0
01 00
01 1 0
0120
01 30 0 2 0 0
01 40 0 2 0 0
01 50 0 2 0 0
0160 0 2 0 0
I D= C 2

001 0
0020
0030 0 2 0 0 D8
0 040 0 2 0 1 A9 02
00 50 0 2 0 3 20 I E 02
0 06 0 0 20 6 FO CC
0 070 0 2 0 8 A9 04
OOSO C2 0A 20 1 E 02
009 0 0 SOD FO 0 5
0 10 0 0 20 F 20 2 E 02
01 1 0 02 1 2 DO E.C.
01 20
01 3C) 0 2 1 4 EA
01 4C
01 50
01 60!
01 70:
0 1 8 0 ;
0 1 9 0 .
02 00:
02 10: 021 5 2 0 3 3 02
0 220 : 0 2 1 3 4 C 8 C 1 E
I D= 0 3

00 1 0
0 0 2 0 :
0 030 . 02 15 8 5 E.F
00 A O ' 0 2 I D B D 02 1 7
00 50. 0 2 2 0 20 3 C 02
00 60 0 2 2 3 AD 02 1 7
0 0 7 0 : 0 2 2 6 29 OF
003 0 0 2 2 8 C 5 EF
0 090 : 0 2 2 A 6C
0 1 0 0 :
01 1 0: 0 2 2 E A9 00
01 2 0 : 0 2 2 D 8 D 02 1 7
01 30 : 0 2 3 0 20 3 C 02
01 4 0 :
Cl £0 : 0 233 A9 07
Cl 60 : 0 2 3 5 8 L 0 3 1 7
01 70 : 0 2 3 S 5 D 02 1 7
01 £ 0 : 0 2 3 E 6C

R L T A P E CL E'
L L A I M £ 0 2
J S R T F T E E T
EEQ C R E A L
L L A I K £ 0 4
J S R T F T E S T
BEQ C R E A L
«j £F. E E L L
E N E P .LTA PE

C R E A L NOF

T P T E S T S T A T F F C T
STA P E E
J S R L E L A Y
L L A F E E
A N L I M £ 0 F
CMP T F F C T
R T S

E E L L L L A I M SCO
S T A P E L
J S R L E L A Y

C T L O F F L L A I M £ 0 7
S T A F E E L
S T A F E L

T E S T FOR U N I T #1 R E A D Y
F O R R E A D ?
. . . Y E S
. . . N O * l TM I T # 2 R E A D Y ?

. . . Y E S

. . . N O , S O U N D S I G N A L AND
TR Y A G A I N .

S A V E U N I T / F C T
F O F T E CO N TROL L A T A
A L L O W R E L A Y S E T T L E
CK E l T S 0 - 3 = TO
O R I G I N A L U N I T / F C T

EC UAL M E A N S U N I T READ Y

Z E R O FCT S E T S T O N E
W A I T , R E S E T & E X I T

E l T S 0 - 2 TO 0 / F

S E T TO F C T # 7 (O F F)

R O U T I N E FOR R E A E I M G T A F E
G O E S H E R E

J S R C T L O F F T U R N O F F C A S S E T T E MOTOR
R L E X I T J M F I N I T A N D R E T U R N V I A K I M I N I T

* * * C A S S E T T E S I F F O F T R T N S * * *

(j & J Q Q Q ® 7:41

0 1 9 0 :
0 2 0 0 :
0 2 1 0 :
0 2 2 0 :
02 3 0 :
0 2 4 0 :
02 50 :
0 2 6 0 :
0 2 7 0 :
0 2 8 0 :
0 2 9 0 :
0 3 0 0 :
0 3 1 0 :
0 3 2 0 :
I D = 0 4

0 0 1 0:

0 0 2 0 :
00 3 0 :
0 0 4 0 :
00 5 0 :
0 0 6 0 :
0 0 7 0 :
008 0 :
009 C :
0 1 0 0 :
01 1 0 :
0 1 2 0 :
01 3 0 :
0 1 4 0 :
01 5 0 :
01 6 0 :
01 7 0 :
0 1 8 0 :
0 1 9 0 :
02 0 0 :
0 2 1 0 :

0 2 2 0 :
I D = 0 5

0 0 1 0 :

0 0 2 0 :
0 0 3 0 :
0 0 4 0 :
0C 50 :
0 0 6 0 :
00 7 0 :
008 0 :
009 0 :
0 1 0 0 :
01 1 0 :
01 2 0 :
0 1 3 0 :
0 1 4 0 :
I D =

0 2 3 C A9 FF D E L A Y L D A I M $ F F
0 2 3 E 8 D 07 1 7 S T A S I 7 0 7 S E T T I M E R TO 1 / 4 S E C
0 2 4 1 2 C 07 1 7 E l T £ 1 7 0 7
0 2 4 4 10 FB B P L D E L A Y + 05
0 2 4 6 60 R T S

0 2 4 7 20 33 02 E E K C K J S R C T L O F F E N S U R E O F F
0 2 4 A 18 C LC
0 2 4 E A D 0 2 17 L D A P B D
0 2 4 E 29 08 AN D IM 108 E l T 3 H I G H M E A N S NO E R K
0 2 5 0 DO 01 B N E E K E X I T
C 2 52 38 S E C
0 2 5 3 60 B K E X I T P T S NO C A R R Y M E A N S NO E R K

* * * CA S S ETT E W R I T E R O U T I N E * * *

0 2 5 4 D8 U R T A P E C L D
0 2 5 5 A9 01 L D A I M S C I T E S T FO R UN I T # 1 R E A D Y
0 2 5 7 20 I B 02 J S R T P T E S T F O R W R I T E ?
0 2 5A FO OC S E C CVF.I T E . . . Y E S
0 2 5 C A9 03 L L A I M S O 3 . . . N O , T E S T U N I T # 2
0 2 5 E 20 I B 02 J S R T F T E S T
0 2 6 1 FO 0 5 B E C C W R I T E . . . Y E S
0 2 6 3 20 2 B 0 2 J SR E E L L . . . N O , SO U N D S I G N A L A N D
0 2 6 6 DO E C E N E W R T A P E A G A I N

0 2 66 EA C W R I T E
•

NOP

•

. C A S S E T T E W R I T E R O U T I N E

. G O E S
•

H E R E

0 2 69 20 33 02
•

JSF. C T L O F F T URN O F F M O T O R S
0 2 6 C 4C 8 C I E J M P I N I T A N D R E T U R N V I A K I M

* * * A L T . S V T E S T & L I G H T * * *

0 2 6 F A9 06 T S T S W A L D A I M £ 0 6 S E T FO R A L T . S W #1
0 2 7 1 DO 02 E N E T S T S V E + 02

0 2 7 3 A9 05 T S T SU E L D A I M £ G5 S E T FOR A L T . S W #2
0 2 7 5 48 FHA S A V E CO DE
0 2 7 6 20 33 02 JSF. C T L O F F I H I T L F O R T S
0 2 79 68 F L A R E T R I E V E C O L E
0 2 7A 20 I E 0 2 J S R T F T E S T A ? ! I T E S T SW
0 2 7 L 18 CLC
0 2 7 E DO 01 E N E T S T X I F NOT E 'Vl 'AL
0 2 8 0 38 S E C M E A N S SW I S N O T S E T
0 2 8 1 4 C 33 02 T S T X JMF C T L O F F C A R R Y M E A N S SW ’ ON*

U S j a C S j H i j) 7:42

A P P L E II HIG H R E S O L U T I O N GR A P H I C S

M E M O R Y O R G A N I Z A T I O N

Andrew H. Eliason
28 Charles Lane

Falmouth, MA 02540

One of the most interesting, though neglected,
features fo the Apple II computer is its ability
to plot on the television screen in a high res
olution mode. In this mode, the computer can
plot lines, points and shapes on the TV display
area in greater detail than is possible in the
color graphics mode (GR) which has a resolution
of 40 x 48 maximum.

In the high resolution (HIRES) mode, the compu
ter can plot to any point within a display area
280 points wide and 192 points high. While this
resolution may not seem impressive to those who
have used plotters and displays capable of plot
ting hundreds of units per inch, it is nonethe
less capable of producing a very complex graphic
presentation'. This may be easily visualized by
considering that a full screen display of 24
lines of 40 characters is "plotted" at the same
resolution. An excellent example of the HIRES
capability is included in current Apple II ad
vertisements .

Why, then, has reletively little software app
eared that uses the HIRES features? One of the
reasons may be that little information has been
available regarding the structure and placement
of words in memory which are interpreted by HI
RES hardware. Information essential to the user
who wishes to augment the Apple HIRES routines
with his own, or to explore the plotting possib
ilities directly from BASIC. In a fit of cur
iosity and Apple-insomnia, I have PEEKed and
POKEd around in the HIRES memory area. The fol
lowing is a summary of my findings. Happy plot
ting!

Each page of HIRES Graphics Memory contains 8192
bytes. Seven bits of each byte are used to ind
icate a single screen position per bit in a ma
trix of 280H x 192V. The eighth bit of each
byte is not used in HIRES and the last eight
bytes of every 128 are not used.

The bits in each byte and the bytes in each
group are plotted in ascending order in the fol
lowing manner. First consider the first two
bytes of page 1 . (Page 2 is available only in
machines with at least 24K).

BYTE_______ I 8192________| 8193___________ i
SCREEN
POSITION 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 0 1 2 3 4 5 6
|V G V G V G VlG V G V G V G

not used)
□
7 7

Figure 1 represents the screen position and res
pective bit k word positions for the first 14
plot positions of the first horizontal line. If
the bit is set to 1 then the color within the
block will be plotted at the position indicated.
If the bit is zero, then black will be plotted
at the indicated position. It can be seen that
even bits in even bytes plot violet, even bits
in odd bytes plot green and vice versa. Thus
all even horizontal positions plot violet and
all odd horizontal politions plot green. To
plot a single white point, one must plot the
next higher or lower horizontal position along
with the point, so that the additive color prod
uced is white. This is also true when plotting
single vertical lines.

The memory organization for HIRES is, for design
and programming considerations, as follows:

Starting at the first word, the first 40 bytes
(0-3 9) represent the top line of the screen (40
bytes x 7 bits = 280). The next 40 bytes, how
ever, represent the 65th line (i.e., vertical
position 64). The next 40 bytes represent the
line at position 128 and the next 8 bytes are
ignored. The next group of 128 bytes represent
three lines at positions 8 , 72 and 1 3 6, the next
group at positions 1 6, 80 and 142, and so on un
til 1024 bytes have been used. The next 1024
bytes represent the line starting at vertical
position 1 (second line down) in the same man
ner. Eight groups of 1024 represent the entire
screen. The following simple porgram provides a
good graphic presentation as an aid to under
standing the above description. Note that there
is no need to load the HIRES machine language
routines with this program. Set HIMEM:8191
before you type in the program.

100 REM SET HIMEM:8191
110 REM HIRES GRAPHICS LEARNING AID
120 POKE -16304,0: REM SET GRAPHICS MODE
130 POKE -16297,0: REM SET HIRES MODE
140 REM CLEAR PAGE - TAKES 20 SECONDS
150 FOR 1=8192 TO 16383: POKE 1,0: NEXT I
160 INPUT "ENTER BYTE (1 to 127)", BYTE
170 POKE -16302,0: REM CLEAR MIXED GRAPHICS
180 FOR J=8192 TO 16383: REM ADDRESS'
190 POKE J ,BYTE: REM DEPOSIT BYTE IN ADDRESS
200 NEXT J
210 POKE -16301,0: REM SET MIXED GRAPHICS
220 GOTO 160
999 END

V = VIOLET An understanding of the above, along with the
G = GREEN following equations will allow you to supplement

the HIRES graphics routines for memory efficient
programming of such things as: target games, 3D
plot with hidden line supression and 30 rota
tion, simulation of the low resolution C=3CRN
(X ,Y) function, etc. Also, you may want to do
some clever programming to put Flags, etc., in
the unused 8128 bits and 5 1 2 bytes of memory!

7 = «

HI RES Graphics Equations and Algorithms To Plot a Point (Without HIRES Plot Routine):

Where:

FB = ADDRESS OF FIRST BYTE OF PAGE.
PAGE 1 = 8192 PAGE 2 = 16384

LH = HORIZONTAL PLOT COORDINATE. 0 TO 279
LV = VERTICAL PLOT COORDINATE. 0 TO 191
BV = ADDRESS OF FIRST BYTE IN THE LINE OF

40
BY = ADDRESS OF THE BYTE WITHIN THE LINE

AT BV
BI = VALUE OF THE BIT WITHIN THE BYTE

WHICH CORRESPONDS TO THE EXACT POINT
TO BE PLOTTED.

Given: FB,LH,LV
BV = LV MOD 8 • 1024 + (LV/8) MOD 8 * 128

+ (LN/64) * 40 + FB
BY = LH/7 + BV
BI = 2~(LH MOD 7)

LH = X MOD 280 : LV = Y MOD 192 (OR)
LV = 192-Y MOD 192

FB = 8192
BV = LV MOD 8 * 1024 + (LV/8) MOD 8 * 128 +

(LV/64) • 40 + FB
BY = LH/7 + BV
BI = 2*(LH MOD 7)
WO = PEEK (BY)
IF (WO/BI) MOD 2 THEN (LINE NUMBER + 2)
POKE BY, BI + WO
RETURN

To Remove a Point, Substitute:

IF (WO/BI) MOD 2 = 0 THEN (LINE NUMBER + 2)
POKE BY, WO-BI

To Test a Point for Validity, the Statement:

"IF (WO/BI) MOD 2" IS TRUE FOR A PLOTTED POINT
AND FALSE (=0) FOR A NON PLOTTED POINT.

R I V E R S I D E E L E C T R O N I C D E S I G N’S KE M A N D M V M - 1 0 2 4 :

A USER ' S E V A L U A T I O N

Marvin L. De Jong
Dept . of Math-Physics

The School of the Ozarks
Pt. Lookout, MO 65726

The price and availability of a variety of
memory and application boards for the S 100 bus
will make many KIM-1 owners think about expand-
ind their systems to be compatible with this
bus. The KIM Expansion Module (KEM) does the
trick. In addition, one of the most attractive
I/O modes is the keyboard/video monitor team.
Riverside's MVM-1024, which interfaces neatly
with the KEM, provides all the necessary cir
cuitry to provide a 16 line by 64 character dis
play on a video monitor. Programs which give
the user a variety of display functions (homing
the cursor, backspace, erase-a-line, etc.) and
allow the user to communicate with the computer
by way of the keyboard are also available from
Riverside. Finally, all of the hardware and
software is well documented in a series of
application notes.

Space does not allow a complete description of
all of the packages mentioned above. The reader
should obtain the application notes and descrip
tions from Riverside if he is contemplating ex
pansion. Summarily, the KEM buffers all of the
address and data lines from the KIM-1, separat
ing the latter into IN and OUT busses as requir
ed by the S 100; provides the necessary memory-
mapped I/O ports for the keyboard, cursor, and
video display; provides the logic for the S 100
signals; and provides four locations for the 1K
2708 EPROMs, in which may be stored display/
monitor programs, PROM programmer software, or
your favorite games .

The KEM does all of this without affecting any
of the I/O ports on the KIM-1. That is, PAD and
PBD may still be accessed from a connector on
the KEM. The MVM-1024 contains its own memory
and does not use any of the memory on the KIM-1.
ASCII from the keyboard is loaded from address
13F8 . To display a character, ASCII code for
the character is stored in location 13FB. The
cursor is controlled by the contents of two
locations, 13F9 which contains a six bit word
which determines the location of the character
in a line, and 13FA which contains a four bit
word which determines the line being used. Of
course, the display/monitor programs do all of
the necessary loading (LDA) and storing (STA)
for you, but it is particularly easy to write
short programs or subroutines which read the
keyboard and/or output data on the video monitor

The danger in writing an equipment evaluation
like this is in making it so concise that it is
Greek to everyone except the hardened computer
addict. So, I will conclude by saying that I
was very satisfied with the performance of the
Riverside hardware and software. I particularly
liked their use of premium components such as LS
TTL, the fact that the KIM-1 I/O ports are still
available for applications, the keyboard polling
software which allows the user to use NMI or
IRQ interrupts for applications and the 4K of
PROM space. Also, it is much easier to enter
and de-bug programs with the display/monitor
software. My only criticism is that it is not
easy to lay out the system in a small package
form.

7:44

A D I G I T A L C L O C K P R O G R A M FOR THE SYM-1

Chris Sullivan
9 Galsworthy Place
Bucklands Beach

Aulcland, New Zealand

The SYM-1 is a one board hobbyist computer
si m iliar to the KIM but with a number of
additional features. Since buying the SYM-1
I have had a great deal of fun playing a-
round with both the software and hardware
sides of it. The SYM-1 monitor, Supermon, is an
incredible monitor in 4K ROM, some of it's sub
routines are called by the following program.

This p r o gram started off as a lesson in
familiarity with the 6502 instruction set and
using the Supermon subroutines to advantage,
but the present version has been modified many
times in order to increase the clock accuracy
and, as my knowledge of the 6502 instruction set
grows, increase coding efficiency. To use it
one should start execution at : 200. Then enter
an "A" or "P" (Shift ASCII 5 0) to signify AM
or PM. Then enter the hours (two digits), the
program then outputs a space to separate the
hours from the m i n utes. Finally enter 2
digits to signify the minutes, the program will
then increment the minutes by 1, and begin the
clock sequence. This slight quirk makes it
easier to set the clock using another clock, set
up the "A" or "P", hours and first digit of the
minutes, then enter the last digit of the
minutes as the seconds counter of your setting
clock reaches 0.

There is another slight quirk in that the clock
counts "All 59", "A 12 00","A12 01", ____,
"A12 59", "P01 00","P01 01" This simpli
fies the programming and means that 1 2 : 3 0 near
midday is in fact, 12:30 AM according to this
clock! However this is not likely to confuse
many people.

After setting up the initial time, the program
adds 1 to the minutes and then carries on any
carry into the hours, possibly changing "A" to
"P" or vice versa. This section of the program
could be made more efficient with full exploita

tion of the 6502 instruction set. The last sec
tion in the program is a 1 minute delay. I have
rewritten this section many times in a search
for an accurate 1 minute delay. The first part
is a double loop which also scans the clock dis
play, this loop takes about 59-8 seconds. The
second part is a double loop to "tweak" the de
lay up to 60 seconds and consists of 2 delays
using the onboard 6532 timer. This timer is in
itialised in 1 of 4 memory locations, specifying
4-1024, 4-64, 4 8, or 4-1 timing, e.g., the location
to write to if one wants 4-1024 timing is A417-
This location thus initialised is counted down
in the 6532. The program reads this value until
it becomes negative, at which time the delay is
over.

Some improvements to the program could be made,
for example better coding in the increment min
utes section. One could also add an alarm fea
ture, possibly using the on board beeper. The
The section to update the time by one minute
could be used as a part of a background real
time clock, being called by a once-a-minute
hardware interupt generated by an on board 6522
timer chip. Once a minute, processing would be
interupted for 100 cycles or so in order to up
date the real time clock. Such clocks have many
uses, one of which is to ensure that certain
number-crunching programs don't get tied down
in big loops.

This improved version occupies less RAM by using
jumps to INBYTE rather than INCHAR and messy bit
manipulations. The delay routine has been
improved to use the on board 6532 timer, and
also give greater resolution and hence greater
timing accuracy.

Editor's Note: This program is present primar
ily for its value in showing how to access the
SYM's monitor for some of the routines. It is
not an "optimal" program for a 24 hour clock,
but should be a good starting point for owners
of SYMs who wish to write similar programs.

SYM-1 ELECTRONIC CLOCK

BY CHRIS SULLIVAN AUGUST 27, 1978

ORG $0200

SPACE • $0020 ASCII SPACE
ACCESS • $8B86
INCHAR * $8A1B
INBYTE • $81D9
OUTCHR • $8A47
OUTBYT • $82FA

0200 20 86 8B BEGIN JSR ACCESS
0203 20 1B 8A JSR INCHAR GET A OR P
0206 85 00 STAZ $00
0208 18 CLC
0209 20 D9 81 JSR INBYTE GET HOURS
020C 85 01 STAZ $01
020E A9 20 LDAIM SPACE SPACE CHARACTER
0210 20 47 8A JSR OUTCHR OUTPUT A SPACE
0213 20 D9 81 JSR INBYTE GET MINUTES
0216 85 02 STAZ $02
0218 F8 SED SET DECIMAL MODE FOR REMAINDER OF PROGRAM

HAVING SET THE INITIAL TIME (LESS 1 MINUTE)
UPDATE THE TIME:

0219 18 TIML0P CLC
021A A5 02 LDAZ $02 GET MINUTES
021C 69 01 ADCIM $01 INCREMENT

021E 85 02 STAZ $02
0220 38 SEC
0221 E9 60 SBCIM $60 TEST IF NEW HOUR

0223 F0 03 BEQ TIMEX

0225 4C 50 02 JMP NORSET IF NOT A NEW HOUR

0228 A9 00 TIMEX LDAIM $00
022A 85 02 STAZ $02 SET MINUTES TO 00
022C 18 CLC

022D A5 01 LDAZ $01
022F 69 01 ADCIM $01 INCR HOURS

0231 85 01 STAZ $01

0233 38 SEC
0234 E9 13 SBCIM $13 TEST HOURS = 13
0236 F0 03 BEQ TIMEY
0238 4C 50 02 JMP NORSET

023B A9 01 TIMEY LDAIM $01 YES, SET HOURS TO 1

023D 85 01 STAZ $01
023F A5 00 LDAZ $00 GET A OR P
0241 49 50 EORIM $50 ASCII P

0243 FO 07 BEQ TIMEZ IS 00 = ASCII P?

0245 A9 50 LDAIM $50 NO, THEN SET 00 TO P

0247 85 00 STAZ $00
0249 4C 50 02 JMP NORSET
024C A9 41 TIMEZ LDAIM $41 YES, THEN SET 00 TO
024E 85 00 STAZ $00

0250 A5 00 NORSET LDAZ $00 GET A OR P
0252 20 47 8A JSR OUTCHR

0255 A5 01 LDAZ $01 GET HOURS
0257 20 FA 82 JSR OUTBYT
025A A9 20 LDAIM SPACE
025C 20 47 8A JSR OUTCHR
025F A5 02 LDAZ $02 GET MINUTES
0261 20 FA 82 JSR OUTBYT
0264 D8 CLD CLEAR DECIMAL MODE
0265 A2 CO LDXIM $C0 SETUP FOR ALMOST 60 SEC WAIT
0267 AO 7D WAITA LDYIM $7D COUNTER

0269 A9 01 WAITB LDAIM $01 NON-DISPLAYING CHARACTER
026B 20 47 8A JSR OUTCHR REFRESH DISPLAY
026E 88 DEY
026F DO F8 BNE WAITB LOW ORDER COUNTER
0271 CA DEX HIGH ORDER COUNTER
0272 DO F3 BNE WAITA
0274 A2 02 LDXIM $02 TWEAK TIME UP TO 60 SECONDS
0276 A9 4D WAITC LDAIM $4D
0278 8D 17 A4 STA $A417 DIVIDE BY 1024 TIMER
027B AD 06 A4 WAITD LDA $A406 REGISTER OF 6532
027E 10 FB BPL WAITD
0280 CA DEX
0281 DO F3 BNE WAITC
0283 F8 SED
0284 4C 19 02 JMP TIMLOP

VERIFY from 0200 thru 0286 is 356F.

The following subroutines called form part of
the SYM-1's SUPERMON monitor:

ACCESS Enables the user program to write to
system RAM, i.e. the RAM contained on the 6532.
It is necessary to call ACCESS before calling
most of the other system subroutines.

INCHAR Get one ASCII charcter from the input
device (here the hex keypad) and return with it
in the A register.

INBYTE Get two ASCII characters from the input
device, using INCHAR and pack into a single byte
in the A register.

OUTCHR Output the ASCII data in the A register
to the output device (here the six digit LED
display).

OUTBYT Convert the byte in the A register into
two ASCII characters and output these to the
output device.

Location A417 is used to initialise the 6532
timer to count down from the value stored in
A417, with a divide by 1024 cycles. Thus the
timer register on the 6532 is decremented by one
every 1024 clock cycles. The timer register
sits at location A406, and the time is consider
ed to be "up" when the value at A406 becomes
negative.

P E E K I N G AT P E T'S B A S I C

Harvey B. Herman
Chemistry Department, U. of N. Carolina

Greensboro, NC 27412

Commodore, for reasons best known to them, has
seen fit to prevent users from PEEKing at PET's
ROM located, 8K BASIC. If you try to run a pro
gram that says, PRINT PEEK (49152), the answer
returned will be zero instead of the actual ins
truction or data in decimal. Disassemblers
written in BASIC will therefore not work prop
erly if they use the PEEK command and try to
disassemble 8K BASIC (decimal locations 49152 to
57520). I was curious to see how the PET's 8K
BASIC was implemented and decided to write a ma
chine language program which circumvents the re
striction .

A listing of the above program which I have cal
led MEMPEEK follows. It is decimal 22 bytes
long, relocatable, and can be stored into any
convenient area of memory. I have chosen to use
the area devoted to the second cassette buf
fer starting at hex 33A. As long as the second
cassette is not used the program should remain
inviolate until the PET is turned off. Storing
the program in memory is trivial if a machine
language monitor is available. Otherwise con
vert the hex values to decimal and manually poke
the values into memory. As of this writing,
Commodore's free, long-awaited, TIM-like monitor
has not arrived but I continue to hope.

MEMPEEK utilizes the user function (USR) which
jumps to the location stored in memory locations
1 and 2. If MEMPEEK is stored in the second
cassette buffer (hex 33A) initialize locations
1 and ? to decimal 58 and 3 respectively. MEM
PEEK was written so that the user function re
turns the decimal value of the instruction given
by its argument (address). For example, if you
want to peek at an address less than decimal
32768 (not part of the BASIC ROMs) use in your
program Y=USR (address) , where address is the
location of interest and the value of Y is set
to the instruction at that address. Since the
argument of the user function is limited to
+32767, use address -65536 for addresses larger
than 32768. Thus to look at locations in the
BASIC ROMs (all above 32768 and where MEMPEEK is
particularly useful) use Y=USR (address -65536).
It is not possible to look at location 32768
(the start of the screen memory) with this pro
gram but this should prove no handicap as PEEK
could be used.

MEMPEEK takes advantage of two subroutines in
the PET operating system. The first (located at
hex D0A7) takes the argument (address) in the
floating point accumulator (conveniently placed
there by the user function) and converts it into
a two byte integer stored at hex B 3 and B4.
Since I choose to use an indirect indexed instr
uction to find the desired instruction the order
of the two bytes at hex B3 (MSB) and B4 (LSB)
need to be reversed. The second subroutine at
hex D278 converts a 2 byte integer representing
the instruction from the accumulator (MSB) and
the Y register (LSB) to floating point form and
stores it in the floating point accumulator.
This value, the instruction, is returned to
BASIC as the result of the user function.

The program, MEMPEEK, is fairly simple but would
be unnessary if the arbitrary restriction on
PEEKing at BASIC was removed. The restriction
makes no sense to me as even a relatively inex
perienced machine language programmer (myself)
was able to get around it. This type of program
would of course not be difficult for competitors
of Commodore to write. I wrote this program for
the fun of i t , to try to understand how BASIC
works and in the hope others will find it use
ful. Furthermore, I hope I can discourage other
manufacturers like Commodore from trying to keep
hobbyists from a real understanding of their
software by arbitrary restrictions.

MEMPEEK Program

033A 1 *=$33A
033A 20A700 2 JSR $D0A7 ;
033D A6B3 3 LDX *B3 ;
033F A4B4 4 LDY $B4 ;
0341 86B4 5 STX $B4

0343 84B3 5 STY $B3
0345 A200 7 LDX #0 ;
0347 A1B3 8 LDA ($B3,X)
0349 A8 9 TAY
034A A900 10 LDA #0
034C 2078D2 11 JSR $D278 ;
034F 60 12 RTS >
0350 13 END

convert to integer
interchange -
$B3 and $B4

initialize index

convert to floating
return to BASIC

MICRO GOES TO EUROPE

In order to better serve the European
6502 market, MICRO has selected L.P.
Enterprises to be its sole distributor
in Britain and Europe. All sales to
dealers and all new subscriptions will
be handled by L.P. Enterprises. This
will result is significantly lower cost
of MICRO. The prices of MICRO will be:

Single Copy Retail: approx. $2.00
Six Copy Subscription: $10.00

For subscription or dealer information,
please contact:

L.P. Enterprises
313 Kingston Road, Ilford
Essex, IG1 1PJ England

7:47

T

ROCKWELL AIM 65 LOW-COST MICROCOMPUTER

AVAILABLE LATE OCTOBER FROM

PO Bom 3 ■ So. CkmImmlord, Maaa 01*24 ■ S17/23C-3C49

$375.00

K I M BASE

Dr. Barry Tepperman
25 St. Mary St., No. 411
Toronto, Ontario M4Y 1R2

Canada

KIMBASE is an application program written in the
6502 microprocessor machine language, designed
to make use of the monitor subroutines and mem
ory configuration of the KIM-1 microcomputer,
for conversion of unsigned integers from one
base to another. The input integer (designated
NUMBER is to be no greater than 6 digits in len
gth; large 6-digit integers may cause overflow
in the multiplication subroutines with consequ
ent errors in conversion. The base to be con
verted from (designated BASE1) and to be con
verted to (BASE2) are each in the range from 02h
to 10(j; the lower limit is set by mathematical
reality and the upper by the limited enumer
ation available from the KIM-1 keypad.

The program is started by placing NUMBER, lowest
order byte last, in page zero 4C-4E, BASE1 (exp
ressed in hexadecimal) in 4A, and BASE2 (also in
hexadecimal) in 4B. The program starts at 0200,
and will light up the KIM-1 LED display with
either an error message (according to an error
flag stored in zero page 02, called ERROR), or
a result display with the input data and a final
result up to l8ndigits in length (RESULT stored
in 03-0E) in successive segments in a format
to be discussed below, or a combination of both
displays, in an endless loop until the RS key is
pressed.

Program Function

After initialization of data workspace, several
tests of input data validity are conducted.
KIMBASE recognizes four error states:

a) NUMBER will remain same after conversion
(i.e. NUMBER=00000x where x is less than either
base). KIMBASE sets ERR0R=01, RESULT=NUMBER,
and shows both error and result displays.

b) Either or both bases are outside the permis-
sable limits of 02-10n. KIMBASE resets bases
under 02 to equal 02 and bases exceeding 1 0 n t o
equal 10k , ar*d executes program to display res
ult without an error display.

c) BASE 1= B A S E 2 . K I MBASE sets ERR0R=02,
RESULT=NUMBER, and shows error and result dis
plays .

d) NUMBER enumeration is impermissable, as one
or more digits =BASE1 (e.g., attempting NUM
BERS 1C352A with BASE 1=05). KIMBASE sets ERR0R=
0 3, shows error display, and aborts further exe
cution .

Note that error states "a" and "c", above, are
not mutually exclusive, and that KIMBASE sets
the error flag ERROR and goes to the appropriate
response routine after only one positive test.
Errors are displayed as a continuous flashing
LED readout "ErrorY" where Y=ERR0R.

Following the test routines, if BASE1^10H , KIM
BASE converts NUMBER into its hexadecimal equiv
alent by successive generation of powers of
BASE1, multiplication of the appropriate power
by the individual digits of NUMBER (remapped by
masking and shifting into array N), and suc
cessive addition of all the hexadecimal prod
ucts . This intermediate result is placed in
array HEXCON. A successive loop algorithm was
used for multiplication rather than a shift-and-
binary-add algorithm for economy of coding.

HEXCON = ^ N(Y) • BASE1(y_l)
y= 1 —6 10

This calculation is bypassed and NUMBER entered
directly into HEXCON if BASE1=10H .

After the conversion to hexadecimal, if BASE2=
10H , KIMBASE sets RESULT=HEXCON and the result
display is initiated. If BASE2^10H , HEXCON is
converted into BASE2 by the common successive
division procedure by BASE2 with mapping of rem
ainders through an intermediate array into
RUSULT.

Results are displayed on the KIM-1 6-digit dis
play as successive 1-second displays of NUMBER,
BASE1 and BASE2, and RESULT divided into 6-digit
segments, in the format:

NNNNNN (NUMBER 1-NUMBER3)
IlbbOO (II=BASE1; 00=BASE2)
RRRRRR (RESULT1-RESULT3)
RRRRRR (RESULTH-RESULT6)
RRRRRR (RESULT7-RRSULT9)
RRRRRR (RESULTA-RESULTC)

which loops endlessly. Where ERROR=01 or 02,
the error message precedes the result display,
and loops endlessly in the display.

All intermediate arrays and products have been
retained in the zero page data workspace to fac
ilitate any debugging or further elaboration of
the program that other users may find necessary.

Users of non-KIM 6502-based microcomputers may
implement KIMBASE easily with appropriate relo
cation of program and workspace (if necessary)
and replacement of the display subroutines
(SHOWER-TIMER1, SH0RES-TIMER2) with appropriate
machine-dependant output routines (or by BRK in
structions with manual interrogation of the ap
propriate arrays to determine output).

KIMBASE - MAIN PROGRAM LISTING

* * * * * * * * * * * * * * * this section in itializes data workspace and constants * * * * * * * * * *

CLD 0200 D8 select binary mode

LDX $#48 01 A2 48 set workspace byte counter

LDA $#00 03 A9 00
STA ARRAY,X 05 95 01 zero common workspace

DEX 07 CA decrement counter

BNE ZEROl 08 D0 F9 i f ^0 loop back
LDA $#0F 0A A9 0F

STA MASK1 0C 85 0F set MASK1=0F

LDA $#F0 0E A9 F0

STA MASK2 10 85 10 set MASK2—F0

7:49

LDA $#05 12 A9 05

STA PWR 14 85 00 set PWR=05

LDX $#FF 16 A2 FF

TXS 18 9A set stack pointer=FF

*************** this section tests input data validity *************************

TST1NR LDA $#00 19 A9 00 TEST - ERROR STATE "a "

CMP NUMBER1 IB C5 4C NUMBERl—00?

BNE TST1BS ID D0 14 no? go to next test

CMP NUMBER2 IF C5 4D NUMBER2=00?

BNE TST1BS 21 D0 10 no? go to next test

LDA NUMBER3 23 A5 4E

CMP BASE2 25 C5 4B NUMBER 3 < BASE2?

BCC CORRl 27 90 03 yes? go to correction routine

JMP TST1BS 29 4C 33 02 go to next test

CORRl LDA $#01 2C A9 01

STA ERROR 2E 85 02 set ERROR=01

JMP C0RR3A 30 4C 5A 02 and jump to C0RR3A

TST1BS LDX $#02 33 A2 02 TEST - ERROR STATE "b "

TST1B2 LDA BASE, X 35 B5 49

CMP $#02 37 C9 02 BASE(X) < 02?

BCC CORR2A 39 90 0B yes? go to correction routine

CMP $#11 3B C9 11 BASE(X)> 11?

BCC RESET1 3D 90 0B no? bypass correction

C0RR2B LDA $#10 3F A9 10

STA BASE fX 41 95 49 otherwise set BASE(X)=10

JMP RESET1 43 4C 4A 02 and bypass next correction

C0RR2A LDA $#02 46 A9 02

STA BASE,X 48 95 49 set BASE(X) =02

RESET1 DEX 4A CA decrement loop counter

BNE TST1B2 4B D0 E8 and go back i f ^0

TST2BS LDA BASE2 4D A5 4B TEST - ERROR STATE "c "

CMP BASE1 4F C5 4A BASE2=BASE1?

BEQ C0RR3 51 F0 03 yes? go to correction routine

JMP TST3BS 53 4C 6A 02 otherwise bypass

COER 3 LDA $#02 56 A9 02
STA ERROR 58 85 02 set ERROR=02

C0RR3A LDX $#03 5A A2 03
LDY $#0C 5C A0 0C

C0RR3B LDA NUMBER,X 5 E B5 4B read NUMBER

STA RESULT,Y 60 99 02 00 into RESULT

DEY 63 88 decrement counters

DEX 64 CA

BNE CORE 3S 65 D0 F7 and loop until complete

JSR SHOWER 67 20 A0 00 display error message

TST3BS LDA BASEl 006A A5 4A

CMP $#10 6C C9 10 BASE1=10?

BCC TST2NR 6E 90 0C no? go to next test

LDX $#03 70 A2 03

h ex h a p LDA NUMBER, X 72 B5 4B yes? read NUMBER

STA HEXCON,X 74 95 25 into HEXCON

DEX 76 CA

BNE HEXMAP 77 D0 F9 for all 3 bytes

JMP HEXl 79 4C IF 03 and bypass hex conversion

TST2NR LDA BASEl 7C A5 4A TEST - ERROR STATE "d "

STA BSTRl 7E 85 11 store BASEl

ASL ASL 80 0A 0A

ASL ASL 82 0A 0A and left shift 4 bits

STA BSTR2 84 85 12 to store BSTR2= (10*BASEl)

LDY $#02 86 A0 02 .
TLP2 LDX $#03 88 A2 03

TLP1 LDA NUMBER,X 8A B5 4B isolate each digit NUMBER(X)

AND MASK, Y 8C 39 0E 00 by masking

CMP BSTR, Y 8F D9 10 00 and compare with BSTR

BCC TRESET 92 90 03 i f less , reset loop

JMP C0RR4 94 4C A0 02 otherwise impermissable - correct

TRESET DEX 97 CA decrement counter NUMBER

BNE TLP1 98 D0 F0 and repeat for corresponding digits
DEY 9A 88 decrement counter BSTR/MASK

BNE TLP2 9B D0 EB and repeat for remaining digits

JMP REMAP 9D 4C A7 02 go to REMAP

C0RR4 LDA $#03 A0 A9 03

STA ERROR A2 85 02 set ERROR=03

JSR SHOWER A4 20 A0 00 and display error message

7> sn

this section remaps NUMBER for conversion to hex * * * * * * * * * * * * * * *

REMAP LDX $#03 A7 A2 03
REMAP1 LDA NUMBER,X A9 B5 4B load NUMBER

STA NHI ,X AB 95 12 into NHI

STA NLO,X AD 95 15 and into NLO

DEX AF CA

BNE REMAPl B0 D0 F7 loop until done

LDX $#03 B2 A2 03

MASKS1 LSR NHI ,X B4 56 12 right shift

LSR NHI ,X B6 56 12 NHI

LSR NHI ,X B8 56 12 4 bits

LSR NHI ,X BA 56 12

LDA NLO ,X BC B5 15

AND MASKl BE 25 0F isolate right digit NLO

STA NLO ,X C0 95 15

DEX C2 CA

BNE MASKS1 C3 D0 EF loop until done

LDY $#01 C5 A0 01
LDX $#03 C7 A2 03

REMAP2 LDA NLO ,X C9 B5 15 store NLO into N

STA N ,Y CB 99 18 00

INY CE C8 alternately

LDA NHI ,X CF B5 12 with NHI

STA N ,Y DI 99 18 00 and in inverse order

INY D4 C8

DEX D5 CA

BNE REMAP2 D6 D0 Fl loop until done

*************** this section converts N into hexadecimal ***************************

HEXCNV LDY $#06 02D8 A0 06 for s ix places

LP1PWR JSR PWRCEN DA 20 60 00 generate powers of BASEl

LDA N ,Y DD B9 18 00

CMP $#01 E0 C9 01 N(Y)=01?

BEQ RESET3 E2 F0 0B i f equal, go to RESET3

BCC RESETS E4 90 15 i f less , go to RESET5

STA MULTP E6 85 IF set MULTP=N (Y)

RESET2 TYA E8 98 put index Y into accumulator

PHA E9 48 and push onto stack

JSR MULT EA 20 80 00 multiply power by N(Y)
PLA ED 68 pull accumulator from stack

TAY EE A8 and restore to Y

RESET3 CLC EF 18

LDX $#03 F0 A2 03

RESET4 LDA MULTC ,X F2 B5 IF add new product

ADC HEXCON,X F4 75 25 to intermediate product

STA HEXCON,X F6 95 25 and store as intermediate product

DEX F8 CA

BNE RESET4 F9 D0 F7 loop until done

RESETS DEY FB 88 for next place

BEQ HEXl FC F0 21 i f counter=0 bypass

DEC PWR FE C6 00 reduce power to be generated

LDA PWR 0300 A5 00
CMP $#01 02 C9 01 PWR—01 ?

BEQ RESET6 04 F0 02 yes? go to RESET6

BCS LP1PWR 06 B0 D2 greater? loop back to new conversion

RESET6 LDA N ,Y 08 B9 18 00

STA MULTC 3 0B 85 22 set MULTC=N(Y)

LDA $#00 0D A9 00

STA MULTC 1 0F 85 20
STA MULTC2 11 85 21

LDA BASEl 13 A5 4A

STA MULTP 15 85 IF set MULTP=BASE1

LDA PWR 17 A5 00
CMP $#01 19 C9 01 PWR=01 ?

BEQ RESET2 IB F0 CB yes? go to RESET2

BCC RESET3 ID 90 D0 less? go to RESET3

*************** this section produces result from HEXCON when BASE2=10 * * * * * * * * * * * * *

IDA BASE2 IF A5 4B

CMP $#10 21 C9 10 BASE2=10?

BCC 2ER02 23 90 10 no? go to

LDY $#0C 25 A0 0C

LDX $#03 27 A2 03

SSia@ljJ© t.si

HEX2 LDA HEXCON,X 29 B5 25 store HEXCON
STA RESULT,Y 2B 99 112 00 into RESULT
DEY 2E 88

DEX 2F CA

BNE HEX2 30 D0 F7 loop until done
JSR SHORES 32 20 90 03 and display result

*************** this section divides HEXCON by BASE2 for crude conversion * * * * * * * * * * *

ZER02 STA DIVIS 0335 85 2C set DIVIS=BASE2

LDX $#03 37 A2 03

LPlDIV LDA HEXCON,X 39 B5 25 load HEXCON

STA DIVD ,X 3B 95 28 into DIVD

DEX 3D CA

BNE LPlDIV 3E D0 F9 loop until done
LDy $418 40 A0 18 for 1 8 places

LP2DIV JSR DIVIDE 42 20 10 01 execute division

LDA RDR 45 A5 30 load RDR

STA RSTOR,Y 47 99 30 00 into RSTOR

LDX $#02 4A A2 02

TST1QO LDA QUO ,X 4C B5 2C

CMP $#01 4E C9 01 QUO (1 or 2)*01?

BCS RESET7 50 B0 09 yes? go to RESET7

DEX 52 CA

BNE TST1Q0 53 D0 F7 loop until done

LDA QU03 55 A5 2F

CMP DIVIS 57 C5 2C QU03=DIVIS?

BCC ENDDIV 59 90 15 less? go to ENDDIV

RESET7 LDX $#03 SB A2 03

RST7A LDA QUO,X 5D B5 2C load QUO

STA DIVD,X 5F 95 28 into DIVD

LDA $#00 61 A9 00
STA QUO,X 63 95 2C zero QUO

DEX 65 CA

BNE RST7A 66 D0 F5 loop until done

STA RDR 68 85 30 zero RDR

DEY 6A 88 decrement place counter

BEQ ENDV2 6B F0 09 i f =0 go to ENDV2

JMP LP2DIV 6D 4C 42 03 otherwise back to divide routine

ENDDIV DEY 70 88 decrement place counter

LDA QU03 71 A5 2F load QU03

STA RSTOR, Y 73 99 30 00 into next RSTOR slot

*************** this section maps RSTOR into RESULT for final result * * * * * * * * * * * * * * * *

ENDV2 LDY $#0C 76 A0 0C

LDX $#18 78 A2 18

CLC 7 A 18

REMAP3 DEX 7B CA

LDA RSTOR,X 7C B5 30 left shift alternate bytes

ASL ASL 7E 0A 0A RSTOR 4 bytes

ASL ASL 80 0A 0A

INX 82 E8

ADC RSTOR,X 83 75 30 add to next byte RSTOR

STA RESULT, Y 85 99 02 00 and store as RESULT

DEY 88 88

DEX 89 CA

DEX 8A CA

BNE REMAP3 8B D0 EE loop until done

JSR SHORES 8D 20 90 03 and display result

1 ■ PWRGEN

Subroutine to generate ab by successive iterations o f multiplication subroutine MULT

with resetting of counters and intermediate products; allows unsigned binary or

decimal arithmetic in 6502 instruction set; maximum result memory allocated 18 b its .
H

subroutines: MULT 0080-009B

data arrays: BASEl 004A

PWR 0000
PWRS 0001

MULTP 00 I f

MULTC 0020-0022

Inapplicable to PWR=00,0 1 ; calling program must test and bypass.

7:52

PWRGEN

MULTCL

LDA PWR 0060 A 5 00 load power

STA PWRS 62 85 01 store in counter

DEC PWRS 64 C6 01 decrement counter

LDA BASEl 66 A5 4A

STA MULTP 68 85 IF set multiplier=base

STA MULTC3 6A 85 22 set multiplicand=base

LDA $#00 6C A9 00
STA MULTC1 6E 85 20 zero 2 high-order bytes

STA MULTC2 70 85 21 o f multiplicand

TYA 72 98 transfer index Y to accumulator

PHA 73 48 and onto stack

JSR MULT 74 20 80 00 jump to MULT

DEC PWRS 77 C6 01 decrement counter

BNE MULTCL 79 D0 F9 i f ^ 0 return to MULTCL

PLA 7B 68 pull accumulator from stack

TAY 7C A8 and restore to index Y
RTS 7D 60 return to main program

2 . MULT

S u b r o u t i n e m u l t i p l i e s 2 4 - b i t n u m b e r (M U LTC) b y 8 - b i t n u m b e r (M U L T P) to

y i e l d 2 4 - b i t f i n a l p r o d u c t (M U L T C) by s u c c e s s i v e i t e r a t i o n s o f n e s t e d

a d d i t i o n l o o p s . I n t e r m e d i a t e p r o d u c t s t o r a g e i n M I D P R O . A l l o w s u n s i g n e d

d e c i m a l o r b i n a r y o p e r a t i o n i n 6 5 0 2 i n s t r u c t i o n s e t .

R e q u i r e s : d a t a a r r a y s : M UL TP 0 0 1 F

MULTC 0 0 2 0 - 0 0 2 2

M I D P R O 0 0 2 3 - 0 0 2 5

I n a p p l i c a b l e to M U L T P l e s s t h a n 0 2 ; c a l l i n g p r o g r a m to t e s t a n d b y p a s s

MULT LD Y M UL TP 0 0 80 A 4 I F l o o p c o u n t e r = m u 1 t i p l i e r

DEY 82 8 8 d e c r e m e n t l o o p c o u n t e r
LDX $ # 0 3 8 3 A 2 0 3 s e t b y t e c o u n t e r i n l o o p

R E D I S T LDA M U L T C , X 8 5 B5 I F s e t i n t e r m e d i a t e r e g i s t e r

STA M I D P R O , X 87 9 5 2 2 = m u l t i p l i e r

DEX 89 CA f o r e a c h b y t e i n a r r a y

BNE R E D I S T 8 A D0 F9 l o o p u n t i l X = 0

A D L P 2 L D X $ # 0 3 8C A 2 0 3 s e t b y t e c o u n t e r i n l o o p

CLC 8E 18 c l e a r c a r r y

A D L P 1 LDA M U L T C , X 8F B5 I F a d d m u l t i p l i c a n d

ADC M I D P R O , X 91 75 22 to i n t e r m e d i a t e p r o d u c t

ST A M U L T C , X 9 3 9 5 I F s t o r e as n e w m u l t i p l i c a n d

DEX 95 CA f o r e a c h b y t e i n a r r a y

BNE A D L P l 96 D0 F7 l o o p u n t i l X = 0

DEY 98 8 8 d e c r e m e n t l o o p c o u n t e r

BNE A D L P 2 99 D0 Fl a n o t h e r l o o p i f Y ^ 0

R T S 9B 60 r e t u r n to m ain p r o g r a m

3 . D I V I D E

S u b r o u t i n e to d i v i d e 2 4 - b i t d i v i d e n d (D I V D) by 8 - b i t d i v i s o r (D I V I S) to

y i e l d 2 4 - b i t q u o t i e n t (Q U O) a n d 8 - b i t r e m a i n d e r (R D R) by s u c c e s s ! v e s h i f t

a n d s u b t r a c t i o n p r o c e s s e s ; u n s i g n e d b i n a r y a r i t h m e t i c o n l y i n 6 5 0 2 i n s t r u c t i o n

s e t . I n t e r m e d i a t e q u o t i e n t s t o r a g e i n Q U O . R e q u i r e s i n i t i a l i z a t i o n o f RDR

a n d a r r a y QUO to 0 b y c a l l i n g p r o g r a m , D I V I S ^ 0 .

R e q u i r e s : d a t a a r r a y s : D I V D 0 0 2 9 - 0 0 2 B

D I V I S 0 0 2 C

QUO 0 0 2 D - 0 0 2 F

RDR 0 0 3 0

D I V I D E LDX $ # 1 9 01 10 A2 19 l o a d s h i f t c o u n t e r

L 0 0 P 1 A S L RDR 12 06 30 l e f t s h i f t r e m a i n d e r

A S L Q U 0 3 14 06 2F l e f t s h i f t q u o t i e n t LS B

L 0 0 P 1 A BCS H I Q U O l 16 B 0 2 8 go to i n c r e m e n t i n g r o u t i n e

i f c a r r y s e t

A S L QUO 2 18 06 2E l e f t s h i f t q u o t i e n t m id - b y t e

BCS H I Q U 0 2 1A B0 2F go to i n c r e m e n t i n g r o u t i n e

i f c a r r y s e t

A S L Q U01 1C 06 2D l e f t s h i f t q u o t i e n t MSB

S a J S Q Q 7:53

L 0 0 P 2 CLC IE 18

A S L D I V D 3 IF 06 2B

BCS H I O R D l 21 B0 2F

A S L D I V D 2 23 06 2A

BCS H I 0 R D 2 25 B0 36

A S L D I V D 1 27 06 29

L O O P 3 B C S IN C R 29 B0 39

L 0 0 P 4 D E X 2B CA

B EQ F I N I S 2C F0 3B

S E C 2E 3 8

LDA RDR 2F A 5 30

SB C D I V I S 31 E5 2 C

B M I L O O P 1 33 30 DD

ST A RDR 35 8 5 30

A S L RDR 37 06 30

A S L QUO 3 39 06 2F

I N C Q U 0 3 3B E6 2F

JMP L 0 0 P 1 A 3D 4 C 16 01

H I Q U 0 1 A S L Q U 0 2 42 06 2 E

I N C Q U 0 2 42 E6. 2E

BCS H I Q U 0 2 44 B0 05

A SL Q U 01 46 06 2D

JMP L 0 0 P 2 48 4 C IE 01

H I Q U 0 2 A S L Q U 0 1 4B 06 2D

I N C Q U 0 1 4D E6 2D

JM P L O O P 2 4F 4 C IE 0 1

H I O R D l A S L D I V D 2 52 06 2 A

IN C D I V D 2 54 E6 2A

B C S H I O R D 2 56 B0 05

A S L D I V D 1 58 06 29

JMP L O O P 3 5a 4C 29 01

H I 0 R D 2 A S L D I V D 1 0 1 5D 06 29

IN C D I V D 1 5F E6 29

JMP L O O P 3 61 4C 29 01

IN C R I N C RDR 64 E6 30

JMP L 0 0 P 4 66 4 C 2B 01

F I N I S LSR RDR 69 46 30

R T S 6B 6 0

c l e a r c a r r y

l e f t s h i f t d i v i d e n d LSB

go to i n c r e m e n t i n g r o u t i n e

i f c a r r y s e t

l e f t s h i f t d i v i d e n d m i d - b y t e

go to i n c r e m e n t i n g r o u t i n e

i f c a r r y s e t

l e f t s h i f t d i v i d e n d MSB

go to i n c r e m e n t i n g r o u t i n e

i f c a r r y s e t

d e c r e m e n t s h i f t c o u n t e r

ju m p to e n d i f X = 0

s e t c a r r y

f r o m c u r r e n t r e m a i n d e r

s u b t r a c t d i v i s o r

b a c k to L 0 0 P 1 i f n e g a t i v e

s t o r e d i f f e r e n c e a s r e m a i n d e

l e f t s h i f t r e m a i n d e r

l e f t s h i f t q u o t i e n t LS B

i n c r e m e n t q u o t i e n t LSB

a n d go b a c k to L 0 0 P 1 A

l e f t s h i f t q u o t i e n t m i d - b y t e

a n d i n c r e m e n t i t

go to f u r t h e r i n c r e m e n t i n g

r o u t i n e i f c a r r y

l e f t s h i f t q u o t i e n t MSB

a n d b a c k to L 0 0 P 2 (i f C = 0)

l e f t s h i f t q u o t i e n t MSB

i n c r e m e n t q u o t i e n t MSB

a n d b a c k to L 0 0 P 2

l e f t s h i f t d i v i d e n d m id - b y t e

i n c r e m e n t d i v i d e n d m id - b y t e

go to f u r t h e r i n c r e m e n t i n g

r o u t i n e i f c a r r y

l e f t s h i f t d i v i d e n d MSB

a n d b a c k to L O O P 3 (i f C = 0)

l e f t s h i f t d i v i d e n d MSB

i n c r e m e n t d i v i d e n d MSB

a n d b a c k to L 0 0 P 3

i n c r e m e n t r e m a i n d e r

a n d b a c k to L 0 0 P 4

r i g h t s h i f t r e m a i n d e r to en

r e t u r n to m ain p r o g r a m

4 . SHOWER S TIMER1

Subroutines to generate error message for display on the KIM-1 6-digit LED readout

by successive l ig h t in g o f appropriate segments o f the ind iv idual d ig it s using- a

message lookup table.

SHOWER

DISP2

DISP1

ires : subroutines : TIMER1 00DE-00E9 timing loop for display

SHORES 0390-03CF result display for ERROR=01 or 02

data arrays: SADD 1741J

SBDD 17431

SAD 1740]
monitor storage for readout

SBD 1742j

ERROR 0002

MSGERR 00D6 -00DA

MSGNUM 00DB-00DD

LDA $#7F 00A0 A9 7F

STA SADD A2 3D 41 17 set output directional vector A=7F

LDA $#1E A5 A9 IE

STA SBDD A7 8D 43 17 set output directional vector B=1E

LDY $#08 AA A0 08 set d ig it selection counter

LDX $#05 AC A2 05 set loop counter

STY SBD AE 8C 42 17 select d ig it

LDA MSGERR,X BI B5 D5 select segments

STA SAD B3 8D 40 17 to be l i t (from lookup table)

JSR TIMER1 B6 20 DE 00 and jump to timing loop

INY B9 C8 select next d ig it

7.,a

INY BA C8
DEX BB CA decrement loop counter

BNE DISP1 BC D0 F0 i f ^0 loop again

LDA $#12 BE A9 12
STA SBD C0 8D 42 17 for sixth digit

LDX ERROR C3 A6 02 set index to error flag

LDA MSGNUM,X C5 B5 DA and select segments

STA SAD C7 8D 40 17 to be l it (from lookup table)

JSR TIMERl CA 20 DE 00 and jump to timing loop

LDA ERROR CD A5 02
CMP $#03 CF C9 03 i f ERROR=03

BEQ DISP2 DI F0 D7 loop same display again

JMP SHORES D3 4C 90 03 otherwise jump to show result

lookup tables:

00D6 D0 DC D0 D0 F9 MSGERR

00DB 86 DB CF MSGNUM

TIMERl requires: interval timer location 1707

TIMER1

DELAY 1

LDA $#FF 00DE A9 FF

STA 1707 E0 8D 07 17

NOP E3 EA

BIT 1707 E4 2C 07 17

BPL DELAY1 E7 10 FA

RTS E9 60

set timer for approximately

200 milliseconds per digit

do nothing but light segments

time up?

no? keep lit

yes? back to SHOWER for next digit

5. SHORES & TIMER2

Subroutines to generate result display on the KIM-1 6-digit LED readout by loading

appropriate data into array DISP for display by KIM monitor subroutine SCANDS.

SHORES requires: subroutines: TIMER2 03D0-03E5 timing loop for display

SHOWER 00A0-00D5 error display for ERROR=01 or 02

: data arrays: ERROR 0002

RESULT 0003-000E

BASE 004A-004B

NUMBER 004C-004E

DISP 00F9-00FA monitor storage for readout:

00F9 INH

00FA POINTL

00FB POINTH

SHORES

LOADN1

LOADN3

LOADN2

LDY

LDX

LDA

STA

INY

DEX

BNE

JSR

LDA

STA

LDA

STA

LDA

STA

JSR

LDX

LDY

LDA

STA

INX

DEY

BNE

TXA

$#01
$#03

NUMBER,X

DISP,Y

L0ADN1

TIMER2

BASEl

POINTH

$#BB

POINTL

BASE2

INH

TIMER2

$#01
93

RESULT, X

DISP,Y

L0ADN2

0390 A0 01 set index for DISP

92 A2 03 set index for NUMBER

94 B5 4B put NUMBER into DISP

96 99 F8 00

99 C8 increment DISP index

9A CA decrement NUMBER index

9B D0 F7 loop until DISP is full

9D 20 D0 03 and jump to timing/display loop

A0 A5 4A load BASEl

A2 85 FB into two highest digits

A4 A9 BB load BB

A6 85 FA into two middle digits

A8 A5 4B load BASE2

AA 85 F9 into two lowest digits

AC 20 D0 03 and jump to timing/display loop

AF A2 01 set index for RESULT

BI A0 03 set index for DISP

B3 B5 02 put RESULT (3 bytes at a time)

B5 99 F8 00 into DISP

B8 E8 increment RESULT index

B9 88 decrement DISP index

BA D0 F7 loop until DISP is full

BC 8A put RESULT index into accumulator

PHA BD 48

JSR TIMER2 BE 20 D0

PLA Cl 68

TAX C2 AA

CPX $#0D C3 E0 0D

BCC LOADN3 C5 90 EA.

LDA ERROR C7 A5 02

CMP $#00 C9 C9 99

BEQ SHORES CB F0 C3

JMP SHOWER CD 4C A0

and push onto stack

now jump to tim ing/display loop

pull accumulator from stack

and put in RESULT index X

i s X > 0 C ?

i f n o t , loop back to load DISP

i f yes, does ERROR=00?

i f yes, loop again for whole display

otherwise show error

TIMER2 r eq u ires : subroutines : SCANDS 1F1F monitor display subroutine

data arrays : CTLP 0049

interval timer location 1707

TIMER2 LDA $#05 03D0 A9 05

STA CTLP D2 85 49

DSPN2 LDA $#FF 03D4 A9 FF

STA 1707 D6 8D 07 17

DSPN1 JSR SCANDS D9 20 IF IF

BIT 1707 DC 2C 07 17

BPL DSPN1 DF 10 F8

DEC CTLP El C6 49

BNE DSPN2 E3 D0 EF

RTS E5 60

set loop counter

set timer for maximum run

and call display subroutine

time up?

no? maintain display

decrement loop counter

i f ^ 0 , reset timer and maintain display

otherwise back to SHORES for next entry

■THE BES T OF M I C R O V O L U M E I"

Even though we had extra copies of MICRO printed
we could not keep up with the demand for back
issues. We have run out of all back issues and
all copies of "All of MICRO Volume 1". Since a
lot of people who are just finding out about
MICRO or are just getting into the 6502 world
still want the information which was contained
in the first year of MICRO, we have decided to
print "The BEST of MICRO Volume 1".

This will contain most of the articles but none
of the advertising. A few articles which were
topical and are now out-of-date will be dropped
and all known microbes will be corrected back in
the o r i ginal articles. The book will be
organized by subject. Aside from these minor
changes, the content will be identical to that
of MICRO numbers 1 through 6. If you already
have them, you will not profit by getting the
new edition. If you do not have them, then this
will be the only way to get the information.

"The BEST of MICRO Volume 1" will be available
about the first of November. It will be about
160 page long in an 8 by 11 format, soft cover.
The price will be $6.00 (plus $1.00 postage US)

Send your Check or Money Order to:

The BEST of MICRO
P.O. Box 3

So. Chelmsford, MA 01824

A D V E R T I S I N G IN M I C R O

It doesn't COST to advertise in MICRO, it PAYS!

MICRO iis currently printing 10,000 copies for
distribution. 3000+ will go immediately to sub
scribers and dealers. The remainder will go to
new subscribers and to replenish dealer stock
throughout the coming year - so you get a lot of
coverage for your dollar, into a readership that
is eager to know about 6502 oriented products.

DEADLINES for Issue Number 8 - December/January

Ad Reservation by 6 November
Ad Copy by 13 November

The rates are very reasonable for the coverage:

Quarter Page (4 x 5) $50.00
Half Page (8 x 5) $75.00
Full Page (8 x 10) $125.00

10?o discount on six consecutive insertions.

Send Ad copy to:

MICRO, P.O. Box 3, So. Chelmsford, MA 01824

or call for info or Ad reservation:

617/256-3649

Finally, a dependable microcomputer board
r i # r

In performance. In quality. In availability- OEMs, educa

tors, engineers, hobbyists, students, industrial users:

Our Versatile Interface Module, SYM-1, is a fully-

assembled, tested and warranted microcomputer board

that’s a true single-board computer, complete with

keyboard and display. All you do is provide a +5V

power supply and SYM-1 gives you the rest—and that

includes fast delivery and superior quality.

Key features include:
• Hardware compatibility with KIM-1 (M OS Technol

ogy) products.

• Standard interfaces include audio cassette with

remote control; both 8 bytes/second (KIM) and 185

bytes/second (SYM-1) cassette formats; TTY and

RS232; system expansion bus; TV/KB expansion

board interface; four I/O buffers; and an oscilloscope

single-line display.

lo place your order now, contact your local area distributor or dealer.

28 double-function keypad with audio response.

4K byte R O M resident SUPERM ON monitor includ

ing over 30 standard monitor functions and user

expandable.

Three R O M /E P R O M expansion sockets for up to

24K bytes total program size.

IK bytes 2114 static RAM, expandable to 4K botei

on-board and more off-board.

50 I/O lines expandable to 70.

Single +5V power requirements.

Priced attractively in single unit quantities: a

without keyboard/display, with OEM discou

larger quantities.

Synertek Systems
Corporation.
150-160 S. Wclfe Road. Sunnyvale, California 94086

(408)988-5690.

->h O

OEM Distributors

Kierulff Electronics

Sterling Electronics (Seattle only)

Zeus Com ponents

Century/' Beil

Lionex

Hallmark

I'K rm arK Electronics

Technico

General Radio

Western Microtechnology'

Future Electronics

Alliance Electronics

Arrow Electronics

Personal Computer Dealers
I'-'ewman Com puter Exchange

-.n:7 Arbor. Michican

Technico

C olum bia, Maryland

Com puterland

Mayfield Heights, Oh io

RN B Enterprises

King of Prussia. Pennsylvania

Com puter Shop

Cambridge, Massachusetts

C nmm ire>r Cl.sch

Ancrona

Culver City. Cali!-

General Radio

Cam den, New J-?

Advanced C om p

Santa Ana, Califc

Com puter Com p

Van Nuys. Cciis'. '

AHt’-nnir-;

6502 SYSTEM SPECIALS
SYSTEMS*

Apple I I 16K RAM S119500 • Commodore pet 8K ram s79500 • Commodore kim I S17500
Synertek vim s26900 • Microproducts Super KIM s39500

__________ ‘ Delivery on most systems is usually stock to 2 weeks. Call or write for specific information.__________

CLASSES AND WORKSHOPS
All classes and workshops listed here are free of charge but have limited enrollment. Preference will be given to

regular CCI customers in the event of an overflow crowd.

WORKSHOPS: Call for details.
k im— 2nd Saturday of the Month • PET— 3rd Saturday of the Month

apple—4th Saturday of the Month
CLASSES: Apple Topics

SOFTWARE
we now have a complete software catalog.

we offer a series of free classes on Apple II to aquaint owners with some of the unique features and capabilities
of their system. Topics covered are Apple Sounds, Low Res. Graphics, Hi Res. Graphics, Disk Basics, and How to use

Your Reference Material. Sessions are held every Thursday Night at 7:00 p.m.

HARDWARE
APPLE II HARDWARE:
• program m able Printer interface (Parallel!

on Board eprom printer driver, full Handshake logic, driver program for
Centronics Axiom. T i s w t p c PR-ao and otners assembled 8 tested $80.00

• Pow er contro l Interface iFrom T W.C. Productsl
u p to 16 cnannels of A C. control per card Controlled from b a s ic Each
channel capable o f 12 am ps at 110V Optically isolated from A C line A C
loads are switched via a low DC. voltage on a ribbon cable (cable
included! Complete system equipped for 4 A C. circuits
Kit $95.00
Assembled $13500
Additional 4 circuit A C Power Modules
Kit $5500
Assembled $5500

• Joystick With 3 Switches
Great for Apple Games like Star wars Includes trimmers to calibrate for
full deflection S35 00

• upper & Lower Case Board
Now you can display both upper and lower case characters on your video
with the Apple II. includes assembled circuit board and sample
software $49.95

Apple Disk I I ' $595 00

App lesoft ROM c a rd ' $200 00

Heuristics Speechlab $189 00

Apple High Speed Serial interface" S180 00

Apple Com m unications c a rd ' $180.00

Apple p ro to typ in g Board $24 9$
• w e are assum ing that these items will be available from stock by the time

this is published

APPLE:
Appietalker'
B om b e r '
space Maze•
Appievision '
Color O rgan '
Las vegas Black jack
Name and Address
Othello
M icroproducts Assem bler— Tape
M icroproducts Assembler— Oisk
RAM Test
ROM Test
Apple Music
Softape instant Library

18 tapes plus softape membership!)
ON DISK:

Inventory system
Text Editor
Mailing List
Backorder Report
Electronic index Card File1
Best of B isho p '

(6 program s on one disk!

•Programs by Bob Bishop

PET:
Finance
'DfcaW
Othello
Black jack
Life
Star wars
Star Trek
M ugw um ps
Read / Write Mem ory
Galaxy Games
Of f The w a ll ' Target Pong
Mortgage
Diet P lanner : B iorvthm
Basic BASIC
Pet System M onitor
Point & Figure Stock Market Plot
TNT Game Pack -1
t n t Game Pack -2

S1S95
9 95

1000
500
9 95

10.00
1000
1000
1995
24 95

7 50
7 50

15.00
39 95

125 00
50.00
30.00
50.00
19 95
49.95

$3 95
500
5 00
5 00
500
500
5 00
500

1000
9 95
9 95

14 95
14 95
14 95
19 95

7 50
10 oo
10.00

PET HARDWARE
• Beeper S24 95
• petunia— for com puter generated sounds $29 95

• Video Bu ffe r— to put your pet s pictures on a television set or
m onitor S29 95

• Joystick— witn four switches, speaker, and volum e control S49 95

• PR-40 P r in te r -w ith cable for pet and printer driver software.
Software Kit ' $300 00
Assembled $425 00

• centronics P-1 M icroprinter— with cable 3nd software for pet S520.00

• Com m odore Hardcopy Printer— (available Novem ber ? ! $695 00

WHY SHOULD YOU BUY FROM US?
B ecause w e can help y o u so lve y o u r p r o b l e m s a n d a n s w e r y o u r ques t ions , w e d o n ' t c la im to k n o w

everyth in g , b u t w e try to help o u r c u s t o m e r s to th e full e x te n t o f o u r resources.

COMPUTER COMPONENTS OF ORANGE COUNTY
6791 Westminster Ave., Westminster, CA 92683 714-898-8330

Hours: Tues-Fri 11:00 AM to 8 00 PM -Sat 10:00 AM to 6:00 PM (Closed Sun, Mon)
Master Charge, Visa, B of A are accepted No COD Allow 2 weeks for personal check to clear.

Add $1.50 for handling and postage. For computer systems please add $10.00 for shipping, handling and
insurance. California residents add 6% Sales Tax.

